Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
ĐẶT x-1=a , x+3=b (a,b cùng dấu)
\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)
\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)
\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)
\(\Leftrightarrow a^2b^2-20ab+64=0\)
\(\Leftrightarrow\left(ab-10\right)^2-36=0\)
\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)
Đến đây đơn giản rồi bn tự giải nhé
ĐK:....\(\frac{x+3}{x-1}\ge0\)
<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)
<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)
Em tự làm tiếp nhé
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
\(\frac{5\left(\sqrt{6}-1\right)\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}\)
\(=\frac{5\left(\sqrt{6}-1\right)^2}{5}-\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{1}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left(\sqrt{6}-1\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{2}-1\right)\)
\(=6-2\sqrt{6}+1-2+2\sqrt{6}-3+\sqrt{2}-1=\sqrt{2}\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^6}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^6}}{2}\)
Chúc bạn học tốt !!!!