Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3x+8}{x+2}\)là số nguyên thì
\(\Leftrightarrow3x+8⋮x+2\)
\(\Rightarrow3\left(x+2\right)+2⋮x+2\)
\(\Rightarrow2⋮x+2\)vì 3(x+2)\(⋮\)x+2
Vì x\(\in Z\Rightarrow x+2\in Z\)
\(\Rightarrow x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị
x+2 | -1 | -2 | 1 | 2 |
x | -3 | -4 | -1 | 0 |
Đối chiếu điều kiện x\(\in Z\)
Vậy x={-3;-4;-1;0}
Để 3x + 8 / x + 2 là số nguyên
<=> 3x + 8 chia hết cho x + 2
<=> 3x + 6 + 2 chia hết cho x + 2
<=> 3 . ( x + 2 ) + 2 chia hết cho x + 2
<=> 2 chia hết cho x + 2
<=> x + 2 thuộc Ư(2)
<=> x + 2 thuộc { 2 , -2 , 1 , -1 }
Sau đấy lập bảng tính x thế thôi . !
Tham khảo cách của mk nhé !!!
\(a,\frac{x+22}{x+1}\inℤ\Leftrightarrow x+22⋮x+1\)
\(\Rightarrow x+1+21⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow21⋮x+1\)
\(\Rightarrow x+1\inƯ\left(21\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2;-8;6;-22;20\right\}\)
vậy___
\(b,\frac{3x+1}{2x+1}\inℤ\Leftrightarrow3x+1⋮2x+1\)
\(\Rightarrow2\left(3x+1\right)⋮2x+1\)
\(\Rightarrow6x+2⋮2x+1\)
\(\Rightarrow6x+2+1-1⋮2x+1\)
\(\Rightarrow6x+3-1⋮2x+1\)
\(\Rightarrow3\left(2x+1\right)-1⋮2x+1\)
\(3\left(2x+1\right)⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(1\right)\)
đến đây lm như phần a
\(c,\frac{2x+1}{6-n}\inℤ\Leftrightarrow2x+1⋮6-n\)
\(\Rightarrow2x+1+11-11⋮6-n\)
\(\Rightarrow2x+12-11⋮6-n\)
\(\Rightarrow2\left(x+6\right)-11⋮6-n\)
\(2\left(x+6\right)⋮6-n\)
\(\Rightarrow11⋮6-n\)
tự lm tp
phần c thì k chắc lắm
\(a)\) \(\frac{-11}{12}< \frac{x}{12}< \frac{-3}{4}\)
\(\Leftrightarrow\)\(\frac{-11}{12}< \frac{x}{12}< \frac{-9}{12}\)
\(\Leftrightarrow\)\(-11< x< -9\)
\(\Rightarrow\)\(x=-10\)
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
áp dụng công thức nhân chéo của phân số (A/B=C/D = AxD=BxC)
a ) \(\Rightarrow3\times x=1\times\left(-18\right)\)
\(\Rightarrow x=-18\div3\)
\(\Rightarrow x=-6\)
KL x=-6
b) \(\Rightarrow x\times\left(-3\right)=\left(-2\right)\times\left(-15\right)\)
\(\Rightarrow x=30\div\left(-3\right)\)
\(\Rightarrow x=-6\)
\(\Rightarrow\left(-6\right)\times y=200\times15\)
\(\Rightarrow y=3000\div\left(-6\right)\)
\(\Rightarrow y=-500\)
KL x=-6 ; y = -500
Để \(A\in Z\) thì :
\(x+2⋮3x-1\)
Mà \(3x-1⋮3x-1\)
\(\Leftrightarrow\hept{\begin{cases}3x+6⋮3x-1\\3x-1⋮3x-1\end{cases}}\)
\(\Leftrightarrow7⋮3x-1\)
\(\Leftrightarrow3x-1\inƯ\left(7\right)\)
Suy ra :
+) \(3x-1=1\Leftrightarrow x=\frac{2}{3}\)
+) \(3x-1=7\Leftrightarrow x=\frac{8}{3}\)
+) \(3x-1=-1\Leftrightarrow x=0\)
+) \(3x-1=-7\Leftrightarrow x=-2\)