Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức M có 3 hạng tử và bậc của chúng lần lượt là:
x6 có bậc 6
– y5 có bậc 5
x4y4 có bậc 4+4 = 8
Bậc 8 là bậc cao nhất
⇒ Đa thức M là đa thức bậc 8
Như vậy :
- Bạn Thọ và Hương nói sai.
- Nhận xét của bạn Sơn là đúng
- Câu trả lời đúng : Đa thức M có bậc là 8.
Đa thức M là đa thức bậc 6 đối với biến x, bậc 5 đối với biến y và bậc 8 (= 4 + 4) đối với tập hợp biến. Như vậy.
- Bạn Thọ và Hương nói sai.
- Nhận xét của bạn Sơn là đúng
- Câu trả lời đúng: Đa thức M có bậc là 8.
Đa thức M là đa thức bậc 6 đối với biến x, bậc 5 đối với biến y và bậc 8 (= 4 + 4) đối với tập hợp biến. Như vậy.
- Bạn Thọ và Hương nói sai.
- Nhận xét của bạn Sơn là đúng
- Câu trả lời đúng: Đa thức M có bậc là 8.
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:
5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)
b)Hiệu của hai đa thức:
5x3−4x2+7x−2=5x3−(4x2−7x+2)
*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.
Vì,chẳng hạn:
5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
a) Giải:
\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)
b) Ta có:
\(g\left(x\right)=16x^4-72x^2+90\)
\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)
\(=\left(4x^2-9\right)^2+9\)
Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)
\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\) là \(9\) tại \(x=\pm\dfrac{3}{2}\)
Lời giải:
a)
\(A=-3x^5-\frac{1}{2}x^3y-\frac{3}{4}xy^2+3x^5+2\)
\(=(-3x^5+3x^5)-\frac{1}{2}x^3y-\frac{3}{4}xy^2+2\)
\(=-\frac{1}{2}x^3y-\frac{3}{4}xy^2+2\)
b) Ký hiệu deg được hiểu là ký hiệu bậc của đa/đơn thức
\(deg(x^3y)=3+1=4\)
\(deg(xy^2)=1+2=3\)
Mà $4>3$ do đó \(deg(Q)=deg(\frac{-1}{2}x^3y-\frac{3}{4}xy^2+2)=4\)
Lời giải:
Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)
Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)
Vậy $a=0$
---------------------
$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$
$=-3xy^4+(a+7)x^3y^7-7xy$
Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)
Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)
Vậy $a+7=0\Leftrightarrow a=-7$
Sơn đúng còn hai bạn còn lại sai
Sai rồi nhé! Không đúng hết