Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )
\(\frac{1}{2}\) - \(\frac{7}{12}\) < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\)
\(\frac{-1}{12}\) < x < \(\frac{1}{8}\)
Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)
\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)
a/b=b/c=c/a
Áp dụng t/c dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b =b/c=c/a=1 suy ra a=b=c
suy ra M =1
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5
sao tự nhiên lại đánh giá sai câu trả lời của mk chứ,chỉ chưa học thui mà,ai ác zậy sẽ bị mk trả thù
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow2c=\frac{a+b}{ab}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
với a,b,c khác 0 và b khác c
đpcm.
Ta có: a + b + c = 0.
=> a = - b - c
b = -a - c
c = - a- b.
Nên ta có:
ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a
= -b^2 - bc - ca -c^2 - a^2 - ab
= -( a^2 + b^2 + c^2)- (ab + bc + ca)
=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)
Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)
=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.
=> ab + bc + ca bé hơn hoặc bằng 0.
Vậy ab + bc + ca bé hơn hoặc bằng 0.
Ta có:
\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)
\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)
\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)
a) Vì b, c >=0 mà a+b+c=1 => c<= 1
Dấu = xảy ra <=> b=c=0
Vậy Max a=1 <=> b=c=0
b) a>=b >=c => 3a >=a+b+c hay 3a >=1 => a<=1/3
Dấu = xảy ra <=> b=c=1/3
Vậy Min a=1/3 <=> b=c=1/3