K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 1 2016
Ta có : x^41+1=x(x^40-1)+x
=x[(x^4)^10-1]+x
Vì x[(x^4)^10-1] : (x^4-1)
Mà x^4-1 chia hết cho (x^2+1)
Vậy dư của pháp chia x^41 cho x^2+1 là x
DD
Đoàn Đức Hà
Giáo viên
15 tháng 1 2022
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\Rightarrow a,b,c\le1\Leftrightarrow a-1,b-1,c-1\le0\)
\(a^3+b^3+c^3-a^2-b^2-c^2=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Suy ra \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
mà \(a^2+b^2+c^2=1\)do đó trong ba số \(a,b,c\)có hai số bằng \(1\), một số bằng \(0\).
Khi đó \(a^{2022}+b^{2023}+c^{2024}=1+0+0=1\).
NN
0
hơi khó nha
a)
\(2^{2024}=2^{8.11.23}\)
\(2^8\equiv4\left(mod7\right)\)
\(2^{8.11}\equiv\left(2^8\right)^{11}\left(mod7\right)\equiv4^{11}\left(mod7\right)\equiv2\left(mod7\right)\)
\(\Rightarrow2^{8.11.23}\equiv\left(2^{8.11}\right)^{23}\left(mod7\right)\equiv2^{23}\left(mod7\right)\equiv4\left(mod7\right)\)
\(\Rightarrow2^{2024}\) chia 7 dư 4
\(41^{2023}=41.\left(41^2\right)^{1011}\)
\(41^2\equiv1\left(mod7\right)\)
\(\Rightarrow\left(41^2\right)^{1011}\equiv1^{1011}\left(mod7\right)\equiv1\left(mod7\right)\)
\(\Rightarrow41.\left(41^2\right)^{1011}\equiv41.1\left(mod7\right)\equiv6\left(mod7\right)\)
\(\Rightarrow2^{2024}+41^{2023}\equiv4+6\left(mod7\right)\equiv3\left(mod7\right)\)
Vậy \(2^{2024}+41^{2023}\) chia 7 dư 3