K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

28 tháng 7 2019

Mk gợi ý nha phần còn lại bạn làm nốt nhá

\(a,\sqrt{2x-1}-\sqrt{3}=\sqrt{x^2+2x-5}-\sqrt{3}\)

\(\Leftrightarrow\frac{2x-4}{\sqrt{2x-1}+\sqrt{3}}=\frac{\left(x-2\right)\left(x+4\right)}{\sqrt{x^2+2x-5}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{3}}-\frac{x+4}{\sqrt{x^2+2x-5}+\sqrt{3}}\right)=0\)

\(b,\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3-3x+1}-\sqrt{x^3-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-3x+1=x^3-x\end{cases}}\)

Câu f sai đề thì phải 

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(2x-1\right)}=x\)

\(\sqrt{x}\left(\sqrt{x-1}+\sqrt{2x-1}-\sqrt{x}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x-1}+\frac{2x-2}{\sqrt{2x-1}+1}+\frac{x-1}{1+\sqrt{x}}=0\end{cases}}\)

Câu g bình lên sau đó chuyển vế và bình lên 1 lần nữa

\(h,pt\Leftrightarrow\sqrt{2x-3}+6-\sqrt{4x+3}-9=0\)

Liên hợp nha bạn

Có mấy câu mk ko bít làm mong bạn thông cảm

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Câu 6:

ĐK: $x\geq 1$

PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$

$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$

$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$

Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:

$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)

Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:

$1-\sqrt{x-1}=\sqrt{x-1}+1$

$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)

Vậy PT có nghiệm $x=1$

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Câu 5:

ĐK: $x\geq 1$

PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$

$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$

$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$

$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$

$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

6 tháng 10 2020

1) đk: \(x\ge1\)

Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)

\(\Leftrightarrow x-1=2x^2-2x\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

2) đk: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2=4x^2-4x+1\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)

=> PT vô nghiệm

3) đk: \(x\ge-1\)

Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)

\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)

\(\Leftrightarrow4\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=1\)

\(\Rightarrow x=0\)

6 tháng 10 2020

4) đk: \(x\ge2\)

Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)

\(\Leftrightarrow x-2=x\left(x-2\right)\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy x = 2

6) đk: \(x\ge-\frac{7}{5}\)

Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=2\)

\(\Leftrightarrow2x-3=2x-2\)

\(\Leftrightarrow0x=1\) vô lý

=> PT vô nghiệm

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)