K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Use BĐT C-S ta có

x(1-yz)+y+z\(\le\sqrt{\left(x^2+\left(y+z\right)^2\right)\left(\left(1-yz\right)^2+1^2\right)}\)=\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\)

Vậy chỉ cần CM:\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\le2\)

\(\Leftrightarrow\left(1+yz\right)\left(2+\left(yz\right)^2-2yz\right)\le2\)

\(\Leftrightarrow\left(yz\right)^3\)\(\le\left(yz\right)^2\)

BĐT cuối cùng đúng vì:

2=x\(^2\)+y\(^2\)+z\(^2\)\(\ge\)y\(^2\)+z\(^2\)\(\ge\)2\(\left|yz\right|\)\(\Rightarrow\left|yz\right|\le1\)

\(\Rightarrow\left(yz\right)^3\)\(\le\)(yz)\(^2\)

BĐT đc chứng minh

đẳng thức xảy ra chẳng hạn 1 số =0 và 2 số =1

hãy bình tinh vào đừng có cuống lên thì lại làm sai

NV
31 tháng 12 2021

ĐKXĐ: ...

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x+3}+2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}-6=0\)

Đặt \(\sqrt{x-1}+\sqrt{x+3}=t>0\)

\(\Rightarrow t^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)

Phương trình trở thành:

\(t+t^2-6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}+\sqrt{x+3}=2\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x+3}-2=0\)

\(\Leftrightarrow\sqrt{x-1}+\dfrac{x-1}{\sqrt{x+3}+2}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(1+\dfrac{\sqrt{x-1}}{\sqrt{x+3}+2}\right)=0\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\)

31 tháng 12 2021

Em cảm ơn thầy ạ

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Lời giải:

Lấy $M(6,7)$ thuộc đường thẳng.

Vecto chỉ phương của đường thẳng: $(13,14)$. Khi đó phương trình tham số của đường thẳng là:

\(\left\{\begin{matrix} x=6+13t\\ y=7+14t\end{matrix}\right.\)

 

25 tháng 11 2019

5 điểm

NV
23 tháng 4 2021

12 sai, C mới là đáp án đúng 

13 sai, A đúng, \(sin-sin=2cos...sin...\)

18.

\(\Leftrightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=m^2-m\left(-m+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m^2-3m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< \dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow m=1\)

Đáp án B

22.

Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(2m-3\right)}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)

\(\dfrac{-2\left(2m-3\right)}{m-2}+\dfrac{5m-6}{m-2}\le0\)

\(\Leftrightarrow\dfrac{m}{m-2}\le0\) \(\Leftrightarrow0\le m< 2\)

Kết hợp điều kiện delta \(\Rightarrow1< m< 2\)

NV
23 tháng 4 2021

24.

Đề bài câu này dính lỗi, ko có điểm M nào cả, chắc là đường thẳng đi qua A

Đường tròn (C) tâm I(1;-2) bán kính R=4

\(\overrightarrow{IA}=\left(1;3\right)\)

Gọi d là đường thẳng qua A và cắt (C) tại 2 điểm B và C. Gọi H là trung điểm BC

\(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)

Theo định lý đường xiên - đường vuông góc ta luôn có: \(IH\le IA\)

Áp dụng Pitago cho tam giác vuông IBH: 

\(BH=\sqrt{IB^2-IH^2}\Leftrightarrow\dfrac{BC}{2}=\sqrt{16-IH^2}\)

\(\Rightarrow BC_{min}\) khi \(IH_{max}\Leftrightarrow IH=IA\)

\(\Leftrightarrow IA\perp d\Rightarrow d\) nhận \(\overrightarrow{IA}\) là 1 vtpt

Phương trình d: 

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)