Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : \(4\sqrt{x+1}=x^2-5x+14\)
\(\Leftrightarrow x^2-5x+14-4\sqrt{x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{matrix}\right.\Leftrightarrow x=3\)
Câu b : \(\left\{{}\begin{matrix}y=x^2\\z=xy\\\dfrac{1}{x}=\dfrac{1}{y}+\dfrac{6}{z}\end{matrix}\right.\) ( ĐK : \(x,y,z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\left(1\right)\\z=x^3\left(2\right)\\\dfrac{1}{x}=\dfrac{1}{x^2}+\dfrac{6}{x^3}\left(3\right)\end{matrix}\right.\)
Xét phương trình (3) :
\(\left(3\right)\Leftrightarrow x^2=x+6\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Thay từng giá trị của x vào pt (1) và (2) . Ta được những cặp nghiệm :
\(\left\{{}\begin{matrix}\left(x;y;z\right)=\left(-2;4;-8\right)\\\left(x;y;z\right)=\left(3;9;27\right)\end{matrix}\right.\)
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)
Theo Viet đảo, \(x^2+x\) và \(y^2+y\) là nghiệm của:
\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)
Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)
\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)
\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)
a/ ĐKXĐ:...
\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)
\(\Rightarrow5x^2+11xy-16y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)
Bạn tự thế vào một trong hai pt giải tiếp
Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v
ĐK: \(x\ge-\frac{3}{2}\)
PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)
Giải cái ngoặc nhỏ suy ra x = -1
Giải cái ngoặc to:
\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)
Nghiệm xấu quá :( => em bí.
a. ĐK: \(-1\le x\le\dfrac{1}{3}\)
\(\left(x+1\right)-\sqrt{x+1}+1-\sqrt{1-3x}=0\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x+1\right)}{x+1+\sqrt{x+1}}+\dfrac{1-\left(1-3x\right)}{1+\sqrt{1-3x}}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x+1+\sqrt{x+1}}+\dfrac{3x}{1+\sqrt{1-3x}}=0\)
\(\Leftrightarrow x\left(\dfrac{x+1}{x+1+\sqrt{x+1}}+\dfrac{3}{1+\sqrt{1-3x}}\right)=0\)
\(\Rightarrow x=0\) (do \(\dfrac{x+1}{x+1+\sqrt{x+1}}+\dfrac{3}{1+\sqrt{1-3x}}>0\) \(\forall x\) thuộc TXĐ)
b. \(\left\{{}\begin{matrix}x-2y+xy=2\\\left(x-2y\right)^2+4xy=4\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-2y=a\\xy=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\Rightarrow b=2-a\\a^2+4b=4\end{matrix}\right.\) \(\Rightarrow a^2+4\left(2-a\right)-4=0\)
\(\Rightarrow a^2-4a+4=0\Rightarrow\) \(\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2y=2\\xy=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)