a)giải hệ phương trình với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

a)   Với m = 0 thì ta có hệ:

\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)

Ta thấy ngay phương trình vô nghiệm.

b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)

Với m = 0 : phương trình vô nghiệm.

Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)

Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)

Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)

\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

Vây minS = \(\frac{7}{8}\) khi m = -4.

20 tháng 12 2015

 

a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)

\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)

b) A=\(x^4-13x^2+36\) không làm được nữa..... 

13 tháng 2 2020

x=2,y=-1

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

Xét \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

=> PT luôn có 2 nghiệm x1,x2 với mọi m

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)

\(\Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2=\left(\frac{1-2m}{2}\right)^2-\frac{3\left(m-1\right)}{2}\)

\(=\frac{1-4m+4m^2-6m+6}{4}=\frac{4m^2-10m+7}{4}\)

\(=\frac{\left(2m-\frac{5}{2}\right)^2+\frac{3}{4}}{4}\ge\frac{3}{16}\)

Dấu "=" xảy ra khi \(2m=\frac{5}{2}\Rightarrow m=\frac{5}{4}\Rightarrow\frac{a}{b}=\frac{5}{4}\)

\(\Rightarrow4a=5b\Rightarrow2a=\frac{5b}{2}\)

lúc đó \(P=\frac{5b}{2}+2b=\frac{9b}{2}\)