\(A=\frac{xy}{4^2-y^2}vs4x^2+y^2=5xy\&2x>y>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

câu này mk nghỉ là \(A=\dfrac{xy}{4x^2+y^2}\) mới đúng

nếu đúng vậy thì lời giải

ta có : \(A=\dfrac{xy}{4x^2+y^2}=\dfrac{xy}{5xy-y^2+y^2}=\dfrac{xy}{5xy}=\dfrac{1}{5}\)

30 tháng 4 2019

Từ gt \(4x^2+y^2=5xy\)

\(\Leftrightarrow4x^2-4xy+y^2-xy=0\)

\(\Leftrightarrow4x\left(x-y\right)+y\left(y-x\right)=0\)

\(\Leftrightarrow4x\left(x-y\right)-y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(4x-y\right)=0\)

\(2x>y>0\Rightarrow4x>y\Leftrightarrow4x-y>0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

Thay vào M:

\(M=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

30 tháng 4 2019

ta có :

4x2+y2=5xy

⇔ 4x2+y2-5xy=0

⇔ 4x2 - 4xy + y2-xy=0

⇔4x(x-y) - y(x-y) = 0

⇔ (x - y)(4x-y)=0

vì 2x > y > 0 nên 4x-y>0

⇒ x-y=0 ⇒ x = y

⇒M= \(\frac{xy}{4x^2-y^2}\)=\(\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

vậy M = \(\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta có \(4x^2-5xy+y^2=0\)

\(\Leftrightarrow (4x-y)(x-y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-y=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=y\\x=y\end{matrix}\right.\)

Vì \(2x>y>0\Rightarrow \) nếu \(4x=y\Leftrightarrow 2x>4x>0\) (vô lý)

Do đó \(x=y\). Thay vào biểu thức A

\(A=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{1}{3}\)

2 tháng 4 2018

ai nhanh và đúng được tích

3 tháng 4 2018

không biết

ai dạy tui đâu

tk đi nhé

10 tháng 11 2018

Hỏi đáp Toán

đăng lên làm j z

23 tháng 2 2020

a) Rút gọn :

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x+y\right)^2-2x^2y-x^2\left(x^2-y^2\right)}{\left(x^2-y^2\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x^2+2xy+y^2\right)-2x^2y-x^4+x^2y^2}{\left(x^2-y^2\right)^2}\right]\)

...

23 tháng 2 2020

 ミ★ Đạt ★彡: sao bạn rút gọn gì vậy @@?

2 tháng 1 2017

2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)

Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:

K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3