Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\frac{x+5}{2017}-\frac{x+5}{2018}+\frac{x+5}{2019}-\frac{x+5}{2020}=0\)
\(\left(x+5\right)\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Do \(\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}\right)\ne0\)
\(\Rightarrow\text{ }x+5=0\)
\(x=0-5\)
\(=-5\)
Mấy câu trên dễ rồi mình hướng dẫn bạn làm câu d và e
d)
\(\left(x-\frac{2}{3}\right)\cdot\left(1-\frac{4}{16}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{1}{4}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}\)
Câu e, tương tự nhé bạn
a. \(\frac{3}{4}x-\frac{1}{5}=\frac{2}{3}\)
\(\frac{3}{4}x=\frac{13}{15}\)
\(x=\frac{52}{45}\)
b. \(\frac{2}{5}.\left(x+1\right)-\frac{1}{2}=0\)
\(\frac{2}{5}.\left(x+1\right)=\frac{1}{2}\)
\(x+1=\frac{5}{4}\)
\(x=\frac{1}{4}\)
c.\(\frac{1}{5}.x-\frac{2}{3}=\frac{4}{8}\)
\(\frac{1}{5}.x=\frac{7}{6}\)
\(x=\frac{35}{6}\)
d. \(\left(x-\frac{2}{3}\right).\left(1-\frac{4}{16}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{4}{16}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0+\frac{2}{3}\\\frac{4}{16}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}}\)
Vậy x = 2/3 hoặc x = 4
e. \(\left(0,32-x\right).\left(4,5-\frac{3}{2}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}0,32-x=0\\4,5-\frac{3}{2}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,32-0\\\frac{3}{2}x=4,5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0,32\\x=3\end{cases}}}\)
Vậy x = 0,32 hoặc x = 3
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
a) ta có: \(\frac{x+13}{2006}+\frac{x+2006}{13}+\frac{x+1}{2018}+3=0\)
\(\Rightarrow\frac{x+13}{2006}+1+\frac{x+2006}{13}+1+\frac{x+1}{2018}+1=0\)
\(\Rightarrow\frac{x+2019}{2006}+\frac{x+2019}{13}+\frac{x+2019}{2018}=0\)
\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}\right)=0\)
mà \(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}>0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=-2019\)
b) \(\frac{4}{\left(x+3\right)\left(x+7\right)}+\frac{3}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{\left(x+7\right)-\left(x+3\right)}{\left(x+3\right)\left(x+7\right)}+\frac{\left(x+10\right)-\left(x+7\right)}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{7}{\left(x+3\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow x=7\)