Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
Vậy x=\(\frac{20}{27}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)
\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)
\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)
\(\frac{9}{11}-x=\frac{-2}{11}\)
\(x=\frac{9}{11}-\frac{-2}{11}\)
\(x=1\)
Vậy x=1
\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)
\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)
\(\frac{-11}{12}\cdot x=\frac{21}{12}\)
\(x=\frac{-21}{11}\)
Vậy x=\(\frac{-21}{11}\)
\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)
\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)
\(\frac{3}{2}+x=\frac{23}{4}\)
\(x=\frac{17}{4}\)
Vậy x=\(\frac{17}{4}\)
\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)
\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)
\(\frac{3}{4}-x:\frac{2}{15}=-13\)
\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)
\(x:\frac{2}{15}=\frac{45}{4}\)
\(x=\frac{3}{2}\)
Vậy x=\(\frac{3}{2}\)
\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)
\(3-\left(\frac{1}{6}-x\right)=1\)
\(\frac{1}{6}-x=2\)
\(x=\frac{1}{6}-2\)
\(x=\frac{-11}{6}\)
Vậy x=\(\frac{-11}{6}\)
\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)
\(1-2x=\frac{-1}{10}\)
\(2x=1-\frac{-1}{10}\)
\(2x=\frac{11}{10}\)
\(x=\frac{11}{20}\)
Vậy x=\(\frac{11}{20}\)
\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)
\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\) \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)
\(\frac{1}{2}x=\frac{11}{12}\) \(\frac{1}{2}x=\frac{-1}{4}\)
\(x=\frac{11}{6}\) \(x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)
\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)
\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)
\(\frac{3}{2}x=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{3}{2}\)
\(x=\frac{20}{27}\)
tk mình đi mình làm nốt cho hjhj ^^
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)
Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)
a./
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)
(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)