\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) . Tìm Min A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

\(ĐK:x\ge0\)

Ta thấy \(\sqrt{x}+1\ge1>0\)

\(\Rightarrow\frac{1}{\sqrt{x}+1}\ge1\) . Mà : \(\sqrt{x}-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

16 tháng 8 2020

ĐKXĐ: \(x\ge0\)

Ta có : \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}\)

\(=1-\frac{2}{\sqrt{x}+1}\)

A đạt GTNN khi \(\frac{2}{\sqrt{x}+1}\) đạt GTLN <=> \(\sqrt{x}+1\)đạt GTNN

Ta có \(x\ge0\Leftrightarrow\sqrt{x}+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi x=0.\(\Rightarrow MinA=\frac{\sqrt{0}-1}{\sqrt{0}+1}=-1\)

Vậy A đạt giá trị nhỏ nhất là -1 khi và chỉ khi x=0

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

Ukm

It's very hard

l can't do it 

Sorry!

 

\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)

\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)

\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)

20 tháng 10 2020

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN