Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))
=9(1-\(\frac{1}{100}\))
A=\(\frac{891}{100}\)
b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))
=1-\(\frac{1}{30}\)
B=\(\frac{29}{30}\)
a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)
\(=1-\dfrac{1}{30}\)
\(=\dfrac{29}{30}\)
Có A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+.........+\frac{4}{67.70}\)
A=\(\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+............+\frac{3}{67.70}\right)\)
A=\(\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-..........-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\left(1-\frac{1}{70}\right)\)
A=\(\frac{4}{3}.\frac{69}{70}=\frac{46}{35}\)
Vì \(\frac{46}{35}>\frac{9}{7}\) nên A>\(\frac{9}{7}\)
\(A=\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{70}\right)\)
\(A=\frac{4}{3}.\left(1-\frac{1}{70}\right)=\frac{4}{3}\cdot\frac{69}{70}=\frac{46}{35}>\frac{9}{7}\)
Vậy A >9/7
a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)
\(=4-\frac{4}{7}=\frac{24}{7}\)
b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)
\(=8+\frac{7}{11}=\frac{95}{11}\)
c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)
\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)
\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)
\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)
d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)
\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)
\(=5\cdot\frac{7}{35}=1\)
e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)
\(=\frac{42}{43}\)
a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)
\(=\frac{2.1}{1}=2\)
a)\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)
=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}+\frac{1}{94}-\frac{1}{97}\)(giản ước các phân số giống nhau)
=\(\frac{1}{1}-\frac{1}{97}\)
=\(\frac{96}{97}\)
a) gọi \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.11}+...+\frac{2}{94.97}\)
\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}\)
\(\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)(rút gọn các phân số giống nhau)
\(\frac{3}{2}A=\frac{1}{1}-\frac{1}{97}\)
\(\frac{3}{2}A=\frac{96}{97}\left(1\right)\)
từ \(\left(1\right)\Leftrightarrow A=\frac{96}{97}\div\frac{3}{2}=\frac{64}{97}\)
b)\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}......\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9......2011}\)(rút gọn các số giống nhau)
\(=\frac{6}{2011}\)
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{197.200}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{197}-\frac{1}{200}\)
\(=1-\frac{1}{200}\)
\(=\frac{199}{200}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{197}-\frac{1}{200}\)
\(A=1-\frac{1}{200}\)
\(A=\frac{199}{200}\)
\(A=\frac{9}{1.4}+\frac{9}{4.7}+...+\frac{9}{53.56}\)
\(\Rightarrow\frac{1}{3}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{53.56}\)
\(\Rightarrow\frac{1}{3}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{56}\)
\(\Rightarrow\frac{1}{3}A=1-\frac{1}{56}\)
\(\Rightarrow\frac{1}{3}A=\frac{55}{56}\)
\(\Rightarrow A=\frac{55}{56}\times3\)
\(\Rightarrow A=\frac{165}{56}\)