Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)
2) \(5^x+5^{x+1}=150\)
=> 5x(1 + 5) = 150
=> 5x.6 = 150
=> 5x = 25
=> \(x=\pm2\)
3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{4}.x-\frac{1}{4}=2.\left(x-3\right)+\frac{1}{4}.x\)
\(\frac{3}{4}.x-\frac{1}{4}=2x-6+\frac{1}{4}.x\)
\(\frac{3}{4}.x-\frac{1}{4}.x-2x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-\frac{1}{4}-2\right)=\frac{-23}{4}\)
\(x.\frac{-3}{4}=\frac{-23}{4}\)
\(x=\frac{-23}{4}:\frac{-3}{4}\)
\(x=\frac{-23}{-3}=\frac{23}{3}\)
neu minh sai dung nem da minh nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)
Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)
Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{x}+\frac{2y}{5}-\frac{1}{5}=0\)
\(\frac{3}{x}+\frac{2y-1}{5}=0\)
\(\frac{3}{x}=\frac{-2y-1}{5}\)
\(x\left(-2y-1\right)=15\)
Tự làm tiếp
Tìm x,y :
\(\frac{3}{x}+\frac{2y}{5}-\frac{1}{5}=0\)
\(\frac{3}{x}+\frac{2y}{5}=0+\frac{1}{5}\)
\(\frac{3}{x}+\frac{2y}{5}=\frac{1}{5}\)
\(\Leftrightarrow x\ne5\)
\(\text{Khi quy đồng để cộng bằng }\frac{1}{5}\text{ ta phỉ quy đồng nên :}\)
\(\frac{3\cdot5}{x\cdot5}+\frac{2y\cdot x}{5\cdot x}=\frac{15}{x\cdot5}+\frac{2y\cdot}{5\cdot x}=\left(\frac{3?}{5\cdot x}>< \frac{4?}{5\cdot x}\right)=\frac{1}{5}\)
\(\text{Ta có 4 trường hợp : }\)
\(\frac{30}{150};\frac{35}{175};\frac{40}{200};\frac{45}{225}\)
Mình cũng chưa học về cái này nhiều ! Mình cũng không chắc ! Bạn có thể rút ra một số về bài của mình đó ! Chuccs bạn học tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{-1}{7}\left(9\frac{1}{2}-8,75\right)\div\frac{2}{7}+62,5\%\div1\frac{2}{3}\)
\(=\frac{-1}{7}\left(\frac{19}{2}-8,75\right).\frac{7}{2}+62,5\%\div\frac{5}{3}\)
\(=\frac{-1}{7}\left(\frac{19}{2}-\frac{875}{100}\right).\frac{7}{2}+62,5\%.\frac{3}{5}\)
\(=\frac{-1}{2}\left(\frac{38}{4}-\frac{35}{4}\right)+\frac{625}{100}.\frac{3}{5}\)
\(=\frac{-1}{2}.\frac{3}{4}+\frac{25}{4}.\frac{3}{5}\)
\(=\frac{-3}{8}+\frac{75}{20}\)
\(=\frac{-15}{40}+\frac{150}{40}\)
\(=\frac{135}{40}=\frac{27}{8}\)
\(\Rightarrow\)A=\(\frac{5}{6.8}\)+\(\frac{5}{8.10}\) +.......+\(\frac{5}{40.42}\)
\(\Rightarrow\)A=\(\frac{5}{2}\) ( \(\frac{2}{6.8}\) +\(\frac{2}{8.10}\) +.....+\(\frac{2}{40.42}\) )
\(\Rightarrow\)A=\(\frac{5}{2}\) (\(\frac{1}{6}\) -\(\frac{1}{8}\) +\(\frac{1}{8}\) -\(\frac{1}{10}\) +.....+\(\frac{1}{40}\)-\(\frac{1}{42}\) )
\(\Rightarrow\)A= \(\frac{5}{2}\) (\(\frac{1}{6}\) -\(\frac{1}{42}\) )
\(\Rightarrow\)A=\(\frac{5}{2}\) .\(\frac{1}{7}\)
\(\Rightarrow\)A= \(\frac{5}{14}\)
thank you