Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-11\right)+\frac{3x}{x-11}=3+\frac{33}{x-11}\)
\(\Leftrightarrow x+\frac{3x}{x-11}-\frac{33}{x-11}=14\)
\(\Leftrightarrow x^2-11x+3x-33=14x-154\)
\(\Leftrightarrow x^2-22x+121=0\)
\(\Leftrightarrow\left(x-11\right)^2=0\Leftrightarrow x=11\)
Vậy .......
b) \(\frac{7-2x}{x-1}=\frac{1-4x}{x+2}\Leftrightarrow\left(7-2x\right)\left(x+2\right)=\left(1-4x\right)\left(x-1\right)\)
\(\Leftrightarrow7x-2x^2+14-4x=x-4x^2-1+4x\)
\(\Leftrightarrow2x^2=-15\)(vô lí)
Vậy pt vô nghiệm
c) \(\frac{3-2x}{x+1}=2+\frac{1-4x}{x-2}\)
\(\Leftrightarrow\left(3-2x\right)\left(x-2\right)=2\left(x+1\right)\left(x-2\right)+\left(1-4x\right)\left(x+1\right)\)
\(\Leftrightarrow3x-2x^2-6x+4x=2x^2+2x-4x-4+x-4x^2+1-4x\)
\(\Leftrightarrow6x=-3\Leftrightarrow x=-\frac{1}{2}\)
Vậy.........
(gửi trước 3 câu)
d) \(\frac{109x-4}{111x+1}-1=0\Leftrightarrow109x-4=111x+1\Leftrightarrow2x=-5\Leftrightarrow x=-\frac{5}{2}\)
Vậy x=-5/2
e) \(\frac{x^2-7}{x}=x-\frac{1}{2}\Leftrightarrow\frac{x^2-7}{x}-\frac{x^2}{x}=-\frac{1}{2}\Leftrightarrow-\frac{7}{x}=\frac{1}{2}\Leftrightarrow x=-14\)
f) \(\frac{x+1}{x+2}=3\Leftrightarrow x+1=3x+6\Leftrightarrow2x=7\Leftrightarrow x=\frac{7}{2}\)
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
a/ \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\frac{3}{2}\)
b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=19-22-28+15\)
\(\Leftrightarrow-8x=-16\)
\(\Leftrightarrow x=2\)
c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)
\(\Leftrightarrow14x-7-15x-6-21x-273=0\)
\(\Leftrightarrow-22x-286=0\)
\(\Leftrightarrow x=-13\)
e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)
\(\Leftrightarrow-2x^2+14x-32=0\)
\(\Leftrightarrow x^2-7x+16=0\)
\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)
\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)
\(\Leftrightarrow x\in\varnothing\)
Bài 1:
a) \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=18:12\)
\(\Leftrightarrow x=\frac{3}{2}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)
b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)
\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow13-10x=-3-2x\)
\(\Leftrightarrow13+3=-2x+10x\)
\(\Leftrightarrow16=8x\)
\(\Leftrightarrow x=16:8\)
\(\Leftrightarrow x=2.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)
c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)
\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)
\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)
\(\Leftrightarrow14x-7-15x-6=21x+273\)
\(\Leftrightarrow-x-13=21x+273\)
\(\Leftrightarrow-x-21x=273+13\)
\(\Leftrightarrow-22x=286\)
\(\Leftrightarrow x=286:\left(-22\right)\)
\(\Leftrightarrow x=-13.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)
Chúc bạn học tốt!
a, 2(4x - 7 ) = 3(x + 1) + 18
⇌ 8x -14 = 3x + 3 + 18
⇌ 5x = 35 ⇌ x = 7
→ S = \(\left\{7\right\}\)
b, ( 2x - 1 )2 - 4x ( x - 3 ) = -11
⇌ 4x2 - 2x + 1 - 4x2 + 12 = -11
⇌ 10x = -12
⇌ x = \(-\frac{12}{10}\)
→ S = \(\left\{-\frac{12}{10}\right\}\)
c, ( 2x - 5 )2 - ( x + 2 )2 = 0
⇌ ( 2x - 5 -x + 2 )2 = 0
⇌ ( x - 3 )2 = 0
⇌ x - 3 = 0 ⇌ x = 3
→ S = \(\left\{3\right\}\)
d, ( x - 6 ) ( x + 1 ) = 2(x + 1)
⇌ ( x - 6 - 2 ) ( x+ 1) = 0
⇌ x2 - 7x - 8 =0
⇌ ( x - 8 ) ( x + 1 ) = 0
⇒\(\left\{{}\begin{matrix}x-8=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-1\end{matrix}\right.\)
→ S = \(\left\{8;-1\right\}\)
e, \(\frac{x-3}{2}=2-\frac{1-2x}{5}\)
⇌ 5( x - 3) = 20 - 2(1 - 2x)
⇌ 5x - 4x = 15 + 20 + 2
⇌ x = 37
→ S = \(\left\{37\right\}\)
g, \(\frac{3x+2}{2}+\frac{5-2x}{3}=\frac{11}{6}\)
⇌ 3(3x + 2) + 2(5 - 2x) = 11
⇌ 6x + 6 + 10 - 4x = 11
⇌ 2x = -5
⇌ x = \(-\frac{5}{2}\)
→ S = \(\left\{-\frac{5}{2}\right\}\)
h, \(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{9x-66}{x^2-4}\)
⇌ (x - 2)2 - 3(x - 2) = 9x - 66
⇌ x2 - 4x + 4 - 3x - 6 = 9x - 66
⇌ x2 -16 + 64 = 0
⇌ (x - 8)2 = 0
⇌ x - 8 = 0
⇌ x = 8
→ S = \(\left\{8\right\}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Nhân chéo, chuyển vế đưa về dạng pt bậc 2, xét đenta cho nó >=0 rồi giải
\(A=\frac{4x-11}{x^2+3}=\frac{4x^2+4x+1-4x^2-12}{x^2+3}=\frac{\left(2x+1\right)^2-4\left(x^2+3\right)}{x^2+3}=\frac{\left(2x+1\right)^2}{x^2+3}-4\)
Phân số \(\frac{\left(2x+1\right)^2}{x^2+3}\ge0\forall x\Rightarrow A=\frac{\left(2x+1\right)^2}{x^2+3}-4\ge-4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(A_{min}=-4\Leftrightarrow x=-\frac{1}{2}\)
Chúc bạn học tốt.