Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
a.|x-1/2|,|y+3/2|,|7-5/2| đều lớn hơn hoặc bằng 0
=>không tìm thấy x,y
b
a)\(\frac{3x+2}{7}=\frac{4x-5}{6}\)
\(\Leftrightarrow\frac{6\left(3x+2\right)}{42}=\frac{7\left(4x-5\right)}{42}\)
\(\Leftrightarrow6\left(3x+2\right)=7\left(4x-5\right)\)
\(\Leftrightarrow18x+12=28x-35\)
\(\Leftrightarrow18x-28x=-12-35\)
\(\Leftrightarrow-10x=-47\Leftrightarrow x=\frac{47}{10}\)
b) \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\left(đkxđ:x\ne-3,-4\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}=\frac{\left(x+2\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=\left(x+2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)-\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+4x+x+4-x^2-3x+2x+6=0\)
\(\Leftrightarrow\left(x^2-x^2\right)+\left(4x+4\right)+\left(4+6\right)+\left(x-3x\right)=0\)
\(\Leftrightarrow4x+4+10-2x=0\)
\(\Leftrightarrow4x+14-2x=0\)
\(\Leftrightarrow2x=-14\Leftrightarrow x=-7\)
a) \(\frac{3x+2}{7}=\frac{4x-5}{6}\)
=> \(6\left(3x+2\right)=7\left(4x-5\right)\)
=> \(18x+12=28x-35\)
=> \(18x+12-28x+35=0\)
=> \(\left(18x-28x\right)+\left(12+35\right)=0\)
=> \(-10x+47=0\)
=> \(-10x=-47\Rightarrow x=\frac{47}{10}\)
b) \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\)
=> (x + 1)(x + 4) = (x + 2)(x + 3)
=> x(x + 4) + 1(x + 4) = x(x + 3) + 2(x + 3)
=> x2 + 4x + x + 4 = x2 + 3x + 2x + 6
=> x2 + 5x + 4 = x2 + 5x +6
=> x2 + 5x + 4 - x2 - 5x - 6 = 0
=> (x2 - x2) + (5x - 5x) + (4 - 6) = 0
=> -2 \(\ne\)0
=> không tìm được x thỏa mãn
hay cách khác : \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\)
=> \(\frac{x+3-2}{x+3}=\frac{x+4-2}{x+4}\)
=> \(1-\frac{2}{x+3}=1-\frac{2}{x+4}\)
=> \(1-\frac{2}{x+3}-\left(1-\frac{2}{x+4}\right)=0\)
=> \(1-\frac{2}{x+3}-1+\frac{2}{x+4}=0\)
=> \(\left(1-1\right)+\left(-\frac{2}{x+3}+\frac{2}{x+4}\right)=0\)
=> \(-\frac{2}{x+3}+\frac{2}{x+4}=0\)
=> \(\frac{-2\left(x+4\right)+2\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}=0\)
=> \(-2x-8+2x+6=0\)
=> \(\left(-2x+2x\right)+\left(-8+6\right)=0\)
=> \(-2\ne0\)
=> không tìm được x thỏa mãn
\(\left(4x+3\right)^2=\frac{2}{3}:6\)
\(\left(4x+3\right)^2=\frac{1}{9}\)
\(\left(4x+3\right)^2=\left(\frac{1}{3}\right)^2\)
\(\Rightarrow4x+3=\frac{1}{3}\)
\(4x=-\frac{8}{3}\)
\(x=-\frac{2}{3}\)
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt