\(\frac{3}{5x8}+\frac{3}{8x11}+...+\frac{3}{2006x2009}\)

b)\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

a,A=1/5-1/8+1/8-1/11+...+1/2006-1/2009=1/5-1/2009=2004/10045

b,B=1/4x(4/6x10+4/10x14+...+4/402x406)

=1/4x(1/6-1/10+1/10-1/14+...+1/402-1/406)

=1/4x(1/6-1/406)

=1/4x100/609=25/609

c,C=2x(5/7x12+5/12x17+...+5/502x507)

=2x(1/7-1/12+1/12-1/17+...+1/502-1/507)

=2x(1/7-1/507)

=2x500/3549

=1000/3549

Xin lỗi vì ko viết được rõ ràng.Mong bạn thông cảm. Chúc bạn học tốt.

  

9 tháng 7 2018

\(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\)

\(=\frac{1}{3}\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2006}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{2009}{10045}-\frac{5}{10045}\right)\)

\(=\frac{1}{3}.\frac{2004}{10045}=\frac{2004}{30135}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

a)

\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)

\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

b)

\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)

\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)

\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)

\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)

\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)

17 tháng 3 2020

Bài 1:

a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)

\(=\frac{-15}{240}-\frac{16}{240}\)

\(=\frac{-31}{240}\)

b, \(=\frac{-10}{12}-\frac{-12}{12}\)

\(=\frac{2}{12}=\frac{1}{6}\)

c, \(=\frac{-30}{6}-\frac{1}{6}\)

\(=\frac{-31}{6}\)

Bài 2:

a, \(x=-\frac{1}{2}-\frac{3}{4}\)

\(x=-\frac{1}{4}\)

b,   \(\frac{1}{2}+x=-\frac{11}{2}\)

\(x=-\frac{11}{2}-\frac{1}{2}\)

\(x=-6\)

Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

13 tháng 7 2017

Giải:

Ta có:

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{\left(x-3\right)\times x}=\frac{1}{6}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x-3}-\frac{1}{x}=\frac{1}{6}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x}=\frac{1}{6}\)

\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow x=3\)

13 tháng 7 2017

De thoi ma,minh ko ghi lai de nha

=\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+...+...=\(\frac{1}{6}\)

=\(\frac{1}{2}\)-\(\frac{1}{x}\)=\(\frac{1}{6}\)

Con lai bn tu lam nha . chuc bn hok tot !!!

15 tháng 7 2019

b) Áp dụng  tính chất

\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow B< A\)

18 tháng 7 2019

\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow A>B\)

9 tháng 4 2017

a) \(3.\frac{5}{4}\)\(-\frac{3^2}{4}\)\(=\frac{3}{2}\)

b)\(\frac{-21}{10}\)\(+\frac{21}{10}\)\(-\frac{3}{4}\)\(-\frac{3}{4}\)\(=\left(\frac{-21}{10}+\frac{21}{10}\right)-\left(\frac{3}{4}+\frac{3}{4}\right)\)

\(=0-\frac{3}{2}\)\(=\frac{-3}{2}\)

c) \(\frac{3}{4}\)\(+\frac{9}{5}-\frac{3}{2}-1\)\(=\left(\frac{3}{4}-\frac{3}{2}\right)+\left(\frac{9}{5}-1\right)\)\(=\frac{-3}{4}\)\(+\frac{4}{5}\)\(=\frac{1}{20}\)

29 tháng 3 2018

các bạn ơi giúp mk với

29 tháng 3 2018

các bạn ơi giúp mk đi mà, mk cần gấp đó

12 tháng 7 2017

Ta có : \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{\left(x-3\right)x}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{x-3}-\frac{1}{x}\)

\(=\frac{1}{2}-\frac{1}{x}\)

\(=\frac{x}{2x}-\frac{2}{2x}=\frac{x-2}{2x}\)