Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
1)=2x^2+(x-1)^2+1
Tổng 2 số không âm và 1 luôn dương
2)
Tồn tại A=> x khác +-1
A=(x+1)/(x-1)=1+2/(x-1)
x-1={-2,-1,1,2}
x={-1,0,2,3}
\(T=\frac{x+1}{2x}=\frac{x}{2x}+\frac{1}{2x}=\frac{1}{2}+\frac{1}{2x}\)
Vì \(\frac{1}{2}\in Z\)
Để \(T\in Z\)thì \(\frac{1}{2}+\frac{1}{2x}\in Z\)hay \(\frac{1}{2x}\in Z\)hay \(2x\inƯ\left(1\right)=\left\{-1,1\right\}\)
Lập bảng ta có:
\(2x\) | \(-1\) | \(1\) |
\(x\) | \(-\frac{1}{2}\) | \(\frac{1}{2}\) |
Nguyễn Tấn Phát Giá trị nguyên của x bn ơi, 1/2 đâu cs là số nguyên
\(P=\frac{x+1}{2x}\Rightarrow Q=2P=\frac{2x+2}{2x}=1+\frac{2}{2x}\)
\(\Rightarrow Q=2P\in Z\Leftrightarrow1+\frac{2}{2x}\in Z\Leftrightarrow\frac{2}{2x}\in Z\)
\(\Leftrightarrow2x\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow x\in\left\{-\frac{1}{2};\frac{1}{2};-1;1\right\}\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;1\right\}\)
...
A\(\in\)Z <=> 2x+1\(⋮\)2x
Mà 2x\(⋮\)2x=> 1\(⋮\)2x
=> 2x\(\in\){1;-1}
=> x \(\in\){\(\frac{1}{2}\);\(\frac{-1}{2}\)}
Mà x\(\in\)Z
=> Không có nghiệm x nguyên để A nguyên