\(\frac{2n-9}{n-4}\)

B=\(\frac{4n+6}{2n+1}\)

C=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn 

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\)

\(\frac{\left(-2\right)^5}{\left(-2\right)^n}=4\)

\(\left(-2\right)^{5-n}=\left(-2\right)^2\)

=> 5-n = 2

n = 3

b) \(\frac{8}{2^n}=2\)

\(\frac{2^3}{2^n}=2\)

\(2^{3-n}=2^1\)

=> 3 -n = 1

n = 2

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)

=> 2n -1 = 3

2n = 4

n = 2

27 tháng 7 2018

a) \(\frac{-32}{\left(-2\right)^n}=4\Leftrightarrow\left(-2\right)^n=\frac{-32}{4}\)

\(\left(-2\right)^n=-8\)Mà \(-8=2^{-3}\)

\(\Rightarrow x=-3\)

b) \(\frac{8}{2^n}=2\Leftrightarrow2^n=\frac{8}{2}\)

\(2^n=4\)  Mà \(4=2^2\Rightarrow x=2\)

c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\Rightarrow\left(\frac{1}{2}\right)^{2n}:\frac{1}{2}=\frac{1}{8}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{8}\cdot\frac{1}{2}\)

\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{16}\Leftrightarrow\frac{1}{2^{2n}}=\frac{1}{16}\)   mà\(16=2^4\)

\(2n=4\Rightarrow n=2\)

Vậy .........................

a, Để 3/(n-1) nguyên 

<=> 3 chia hết cho n-1 

Mà n-1 nguyên 

=> n-1 thuộc Ư(3)={-3,-1,1,3}  

=> n=-2,0,2,4

9 tháng 8 2017

vì các phân số đó ko rút gọn được nữa

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)