\(\frac{2^3.2^5.4^2}{2^9}\)
 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

\(\frac{2^3.2^5.4^2}{2^9}=\frac{2^8.2^4}{2^9}=\frac{2^{12}}{2^9}=2^3=8\)

~Hok tốt ~

30 tháng 8 2019

Tham khảo:

\(\frac{2^3.2^5.4^2}{2^9}=\frac{2^8.2^4}{2^9}=\frac{2^{12}}{2^9}=2^3=8\)

Ok. 

26 tháng 8 2018

\(a.\frac{4^3.1^5}{9^2.8^2}=\frac{2^6.1}{3^4.2^6}=\frac{1}{81}\)

\(b.\frac{25^2.2^2.4^1}{3^3.2^3.224}=\frac{5^4.2^4}{3^3.2^8.7}=\frac{5^4}{3^3.2^4.7}=\frac{625}{3024}\)

\(c.\frac{25^3.5^6.5^2}{9^4.10^2}=\frac{5^{14}}{3^8.2^2.5^2}=\frac{5^{10}}{3^8.2^2}\)

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

3 tháng 9 2019

a. \(\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}=\frac{3^3.5^3.5^4}{\left(-3\right)^5.5^6}\)

\(=\frac{3^3.5^7}{\left(-3\right)^5.5^6}=\frac{5}{-9}\)

b. \(\frac{6^3.2^5.\left(-3\right)^2}{\left(-2\right)^9.3^7}=\frac{2^3.3^3.2^5.3^2}{\left(-2\right)^9.3^7}\)

\(=\frac{2^8.3^5}{\left(-2\right)^9.3^7}=\frac{1}{\left(-2\right).3^2}=-\frac{1}{18}\)

\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{1}{18}\)

\(b,2^8:2^5+3^3.2-12\)

\(=2^3+9.2-12\)

\(=8+18-12\)

\(=26-12\)

\(=14\)

Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!

Sửa lại câu b

\(=2^3+27.2-12\)

\(=8+54-12\)

\(=62-12\)

\(=50\)

11 tháng 8 2019

Tính:

2) \(\left(\frac{2}{3}\right)^3-\left(\frac{3}{4}\right)^2.\left(-1\right)^5\)

\(=\frac{8}{27}-\frac{9}{16}.\left(-1\right)\)

\(=\frac{8}{27}-\left(-\frac{9}{16}\right)\)

\(=\frac{371}{432}.\)

Xin lỗi, anh chỉ làm câu này thôi em.

Chúc em học tốt!

\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)

\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)

\(\Rightarrow B=-\frac{113}{960}\)

\(C=0\)

\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\Rightarrow D=1\)

11 tháng 8 2019

D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)

=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)

=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)

=\(\frac{1}{99}-1-\frac{1}{99}\)

=1

\(a,\frac{2^3.2^4}{2^5}=\frac{2^7}{2^5}=2^2=4\)

\(b,\frac{\left(0,2\right)^5.\left(0,6\right)^4}{\left(0,2\right)^7.\left(0,3\right)^4}=\frac{\left(0,2\right)^5.\left(0,3\right)^4.2^4}{\left(0,2\right)^7.\left(0,3\right)^4}=\frac{2^4}{\left(0,2\right)^2}\)

\(c,\frac{3^3.12^4}{6^5.9^4}=\frac{3^3.6^4.2^4}{6^5.3^8}=\frac{2^4}{6.3^5}=\frac{2^4}{2.3.3^5}=\frac{2^3}{3^6}\)

\(d,\frac{2^3+2^4+2^5}{7^2}=\frac{8+16+32}{49}=\frac{56}{49}=\frac{8}{7}\)

\(e,\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)