![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath
b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
<=> n thuộc {0;4}
![](https://rs.olm.vn/images/avt/0.png?1311)
b)
Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)
\(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\)
Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\)
Vậy....
a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)
Đến đây lập bảng là ra .
b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)
\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{5n+1}{n+1}=\frac{5n+5-4}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5-\frac{4}{n+1}\)
Để \(5-\frac{4}{n+1}\) là số tự nhiên \(\Leftrightarrow\frac{4}{n+1}\)là số tự nhiên
=> n + 1 là ước tự nhiên của 4 => Ư(4) = { 1; 2; 4 }
Ta có : n + 1 = 1 <=> n = 1 - 1 => n = 0 (TM)
n + 1 = 2 <=> n = 2 - 1 => n = 1 (TM)
n + 1 = 4 <=> n = 4 - 1 => n = 3 (TM)
Vậy n = { 0; 1; 3 } thì A là số tự nhiên
Để \(A=\frac{5n+1}{n+1}\in N\left(n\ne1\right)\) thì 5n + 1 chia hết cho n + 1
<=> 5n + 5 - 4 chia hết cho n + 1
=> 5(n + 1) - 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng:
n + 1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)
\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(A=\frac{7}{4}-\frac{100}{2^{100}}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)
Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(2B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)
\(B=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Rightarrow\)\(A=\frac{7}{4}-\frac{100}{2^{100}}+B=\frac{7}{4}-\frac{100}{2^{100}}+\frac{1}{2^2}-\frac{1}{2^{99}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=\frac{2^{101}-102}{2^{100}}\)
Vậy \(A=\frac{2^{101}-102}{2^{100}}\)
Chúc bạn học tốt ~