\(A=\frac{2020-n}{2012-n}\)

Tìm n sao cho \(A\in N\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

HELP ME

20 tháng 6 2016

undefined

20 tháng 6 2016

a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath

b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1

<=> 5 chia hết cho n + 1

<=> n + 1 thuộc Ư(5) = {1;5}

<=> n thuộc {0;4}

21 tháng 7 2019

b) 

Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)

   \(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\) 

\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\) 

Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và   \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\) 

Vậy....

21 tháng 7 2019

a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)

Đến đây lập bảng là ra .

b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)

Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)

\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)

7 tháng 3 2017

\(A=\frac{5n+1}{n+1}=\frac{5n+5-4}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5-\frac{4}{n+1}\)

Để \(5-\frac{4}{n+1}\) là số tự nhiên \(\Leftrightarrow\frac{4}{n+1}\)là số tự nhiên 

=> n + 1 là ước tự nhiên của 4 => Ư(4) = { 1; 2; 4 }

Ta có : n + 1 = 1 <=> n = 1 - 1 => n = 0 (TM)

           n + 1 = 2 <=> n = 2 - 1 => n = 1 (TM)

           n + 1 = 4 <=> n = 4 - 1 => n = 3 (TM)

Vậy n = { 0; 1; 3 } thì A là số tự nhiên

7 tháng 3 2017

Để \(A=\frac{5n+1}{n+1}\in N\left(n\ne1\right)\) thì 5n + 1 chia hết cho n + 1

<=> 5n + 5 - 4 chia hết cho n + 1

=> 5(n + 1) - 4 chia hết cho n + 1

=> 4 chia hết cho n + 1

=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}

Ta có bảng:

n + 1-4-2-1124
n-5-3-2013
3 tháng 11 2018

Đặt \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)

\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(A=\frac{7}{4}-\frac{100}{2^{100}}+\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(2B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\right)\)

\(B=\frac{1}{2^2}-\frac{1}{2^{99}}\)

\(\Rightarrow\)\(A=\frac{7}{4}-\frac{100}{2^{100}}+B=\frac{7}{4}-\frac{100}{2^{100}}+\frac{1}{2^2}-\frac{1}{2^{99}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=\frac{2^{101}-102}{2^{100}}\)

Vậy \(A=\frac{2^{101}-102}{2^{100}}\)

Chúc bạn học tốt ~ 

3 tháng 11 2018

Thank you very much !