\(A=\frac{1}{a^2+b^2}+\frac{3}{ab}+ab\)

\(a^2+b^2+6ab\le8\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2022

tks bn

19 tháng 2 2020

We have \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\)

\(\Rightarrow\frac{a+b+c}{abc}=3\Rightarrow a+b+c=3abc\)

Apply inequality Cauchy, we have:

\(\text{Σ}_{cyc}\frac{ab^2}{a+b}\ge3\sqrt[3]{\frac{ab^2}{a+b}.\frac{bc^2}{b+c}.\frac{ca^2}{c+a}}\)

\(=\frac{3abc}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{a+b+c}{\frac{a+b+b+c+c+a}{3}}=\frac{3}{2}\)

"=" occurs when a = b = c = 1

23 tháng 3 2019

\(P>=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{2\left(a+b+c\right)}\)(bdt svac-xơ)(1)

ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=3\)

=>\(a+b+c=3abc\)(2)

từ 1 và 2 =>\(P>=\frac{\left(b\sqrt{a}+b\sqrt{c}+a\sqrt{c}\right)^2}{6abc}\)

=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)   (bdt cô si)
 

=>\(P>=\frac{9abc}{6abc}=\frac{3}{2}\)

xảy ra dấu = khi và chỉ khi a=b=c=1

14 tháng 8 2016

Dự đoán các biểu thức đạt GTLN / GTNN tại các mút hoặc tại các biến bằng nhau.

Việc còn lại là nhóm hợp lý sao cho dấu bằng xảy ra giống như dự đoán,

\(A=a^2+\frac{18}{a^2}=\left(\frac{18}{a^2}+\frac{a^2}{72}\right)+\frac{71a^2}{72}\ge2\sqrt{\frac{18}{a^2}.\frac{a^2}{72}}+\frac{71.6^2}{72}=\frac{73}{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{18}{a^2}=\frac{a^2}{72}\\a=6\end{cases}}\Leftrightarrow a=6\)

\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{cases}}\Leftrightarrow a=\frac{1}{2}\)

c. \(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\), làm tương tự câu a, b

d.

\(t=\frac{a+b}{\sqrt{ab}}\ge\frac{2\sqrt{ab}}{\sqrt{ab}}=2\)

\(D=t+\frac{1}{t}\text{ }\left(t\ge2\right)\), làm tương tự câu a.

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

2 tháng 8 2017

a)Áp dụng BĐT B.C.S:(1^2+1^2)(x^2+y^2)>=(1.x+1.y)^2>>>2(x^2+y^2)>=(x+y)^2.Sau đó chia 2 ở cả 2 vế.

Áp dụng BĐT Cô-si:(x+y)>=2√xy >>>>(x+y)^2/2>=2xy(đpcm)

b)a^2+1/(a^2+1)=a^2+1+1/(a^2+1)-1>=2-1=1(BĐT Cô-si)

c)a^2+b^2>=2ab suy ra (a^2+b^2)c>=2abc,tương tự rồi cộng lại là >=6abc nhé

d)ab/a+b<=(a+b)^2/4(a+b)(cm ở câu a)=(a+b)/4

Tương tự cộng lại được ab/a+b+bc/b+c+ca/c+a<=(a+b+b+c+c+a)/4=(a+b+c)/2(đpcm)

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!

22 tháng 9 2019

Bài 3: Full 2 cách (sai chỗ nào nhắn em cái,và ko biết ad đã fix lỗi ko dán đc link bên h vào chưa, nếu chưa thì ib em gửi full link):

Câu hỏi của Phạm Hoàng Lê Nguyên - Toán lớp 1 | Học trực tuyến

22 tháng 9 2019

Bài 3: \(P=\Sigma\frac{a}{a^2+bc}\le\frac{1}{2}.\Sigma\frac{1}{\sqrt{bc}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\le\frac{1}{2}.\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\)

Vậy...

P/s: Sai /thắc mắc chỗ nào thì nhắn hộ em cái chứ đừng tk sai:P