\(A=\frac{17^{2008}+1}{17^{2009}+1}\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )

 Nên    B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)

                              =\(\frac{17^{2009}+17}{17^{2010}+17}\)

                              =\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)

                              =\(\frac{17^{2008+1}}{17^{2009}+1}\)=A

Vậy A>B

24 tháng 3 2016

17A = \(\frac{17^{2009}+17}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)

17B = \(\frac{17^{2010}+17}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)

mà  \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\)

=> A  >  B

24 tháng 3 2016

B < 17 ^ 2009 + 1 + 16 / 17^2010 + 1+16 = 17^2009 + 17 / 17^2010 + 17 = 17(17^2008 + 1) / 17(17^2009+1) = 17^2008 + 1  / 17^2009 + 1 =A

=> B < A 

****** k mk nha!

15 tháng 7 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{1+\frac{2012}{2011}+\frac{2012}{2010}+\frac{2012}{2009}+...+\frac{2012}{2}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2011}+...+\frac{2012}{2}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)}=\frac{1}{2012}\)

20 tháng 4 2016

B = 20092009 + 1 / 20092010+1 < 20092009+1+2008 / 20092010+1+2008

                                                    = 20092009+2009 / 20092010+2009

                                                    = 2009(20092008+1) / 2009(20092009+1)

                                                     = 20092008+1 / 20092009+1 = A

=> A > B nhé!

Ai k mk mk k lại !!

20 tháng 4 2016

Vậy bạn phả xét bổ đề \(\frac{a}{b}<\frac{a+n}{b+n}\)

19 tháng 4 2015

B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)

C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)

19 tháng 4 2015

1) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)