\(A=\frac{1}{71}+\frac{2}{70}+\frac{3}{69}+\frac{4}{68}+...+\frac{70}{2}+\frac{71}{1};B=\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Ta có công thức : \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(\Rightarrow B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+10}\)

           \(=\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+10\right)10}{2}}\)

           \(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)

           \(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

           \(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

           \(=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)

20 tháng 3 2017

\(\frac{4.\left(\frac{1}{5}-\frac{1}{71}+\frac{1}{123}\right)}{3.\left(\frac{1}{5}-\frac{1}{71}+\frac{1}{123}\right)}-\frac{\frac{1}{19}+\frac{1}{1315}-\frac{1}{287}}{3.\left(\frac{1}{19}+\frac{1}{1315}-\frac{1}{287}\right)}=\frac{4}{3}-\frac{1}{3}=\frac{3}{3}=1\)

13 tháng 3 2015

cho 1 cai dung minh cho ban roi ma

26 tháng 6 2016

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(A=\frac{1.2.3...99}{2.3.4...100}\)

\(A=\frac{1}{100}\)

\(B=1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{72}\)

\(B=1+1+...+1+\left(\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}\right)\)

\(B=5.1+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)

\(B=5+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)

\(B=5+\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(B=5+\frac{2}{9}=\frac{47}{9}\)

26 tháng 6 2016

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{100}\right)\)

    \(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)

     \(=\frac{1.2.3.4....99}{2.3.4.5...100}\)

      \(=\frac{1}{100}\)

27 tháng 5 2017

Ta có:

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left[1+\frac{1}{70}\right]+\left[\frac{1}{2}+\frac{1}{69}\right]+\left[\frac{1}{3}+\frac{1}{68}\right]+...+\left[\frac{1}{35}+\frac{1}{36}\right]\)

\(=\frac{71}{1.70}+\frac{71}{2.69}+\frac{71}{3.68}+...+\frac{71}{35.36}\)

\(=71\left[\frac{1}{1.70}+\frac{1}{2.69}+\frac{1}{3.68}+...+\frac{1}{35.36}\right]⋮71\)

=> \(A=1\times2\times3\times4\times...\times70\times\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}\right]⋮71\)=> ĐPCM

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA

27 tháng 5 2017

Xét \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left(1+\frac{1}{70}\right)+\left(\frac{1}{2}+\frac{1}{69}\right)+...+\left(\frac{1}{35}+\frac{1}{36}\right)\)

\(=\frac{71}{1.70}+\frac{71}{2.69}+...+\frac{71}{35.36}=71\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)\)

=>\(A=1.2.3.4...71.\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)⋮71\)

Vậy A chia hết cho 71

31 tháng 7 2016

1) 

a) \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{24}.5^{12}.3^3.2^9}=\frac{3}{5^2}=\frac{3}{25}\)

31 tháng 7 2016

Bài 2:

\(\frac{abab}{cdcd}=\frac{ab.101}{cd.101}=\frac{ab}{cd};\frac{ababab}{cdcdcd}=\frac{ab.10101}{cd.10101}=\frac{ab}{cd}\)

Vậy \(\frac{ab}{cd}=\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)

12 tháng 4 2017

ai làm hộ với

12 tháng 4 2017

mk chỉ cần nhìn sơ qua là biết có câu dễ sao bn ko tự nghĩ đi hơi dễ rồi trừ khi bn đố tôi chục câu tiếng anh vật lí văn

4 tháng 8 2016

\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)

\(A=1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)

\(A=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=9-\left(1-\frac{1}{10}\right)=9-1+\frac{1}{10}=8\frac{1}{10}\)