Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
B = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{15}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{63}\)
B = \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{12}+\frac{1}{15}+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)+\frac{1}{63}\)
B = \(1+\frac{1}{5}+\frac{3}{40}+\frac{1}{63}\)
B = \(1\frac{11}{40}+\frac{1}{63}\)
B = \(1\frac{733}{2520}\)
nguyentuantai làm hòa với Nguyễn Đình Dũng phải chăng mục đích là lấy **** ko
a) 4 x 8 x ( 56 + 44) - 3200
= 32 x 100 - 3200
= 0
b) \(\frac{3+2}{60}\)+ \(\frac{4+3}{168}\)
= \(\frac{5}{60}\)+ \(\frac{7}{168}\)
= \(\frac{1}{8}\)
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+-\frac{1}{56}+-\frac{1}{72}+-\frac{1}{90}\)
\(\Rightarrow A=-1\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}\right)\)
\(A=-1\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow A=-\frac{3}{20}\)
\(A=\frac{-1}{20}-\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=\frac{-3}{20}\)
#
A=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
A=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
A=1-1/8
A=7/8
GOOD LUCK
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....-\frac{1}{8}\)
\(A=1-\frac{1}{8}=\frac{7}{8}\)
Bạn tự ghi lại đề nha !
A = \(\frac{1}{3}\)+ \(\left(\frac{1}{42}+\frac{1}{56}+...+\frac{1}{600}\right)\)
A = \(\frac{1}{3}\)+ \(\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\right)\)
A = \(\frac{1}{3}\)+ \(\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\right)\)
A = \(\frac{1}{3}\)+ \(\left(\frac{1}{6}-\frac{1}{25}\right)\)
A = \(\frac{1}{3}\)+ \(\frac{19}{150}\)
A = \(\frac{23}{50}\).
Em xem lại đề bài nhé! có thể tham khảo bài dưới đây:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{600}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+...+\frac{25-24}{25.24}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
Nếu đề bài không bị sai
\(A=\frac{1}{3}+\left(\frac{1}{42}+...+\frac{1}{600}\right)\)
\(=\frac{1}{3}+\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{3}+\left(\frac{1}{6}-\frac{1}{25}\right)\)
Tự làm nốt nhé!