\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

10 tháng 5 2018

Trần Cao Vỹ Lượng bạn giải hay lắm

9 tháng 5 2018

câu a nè:

9 tháng 5 2018

Giúp mình nha mấy bạn

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

18 tháng 4 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

có \(\frac{1}{2\cdot3}< \frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot4}< \frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot5}< \frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{9\cdot10}< \frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}>A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow1-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{8}{9}>A>\frac{2}{5}\)

20 tháng 4 2020

Bạn ơi, sai rồi, mình k nhầm
làm sao mà \(\frac{1}{2^2}< \frac{1}{1.2}\)được

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu...
Đọc tiếp

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

 

 

 

0
 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu thức:...
Đọc tiếp

 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

7
22 tháng 4 2018

CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)