\(A=\frac{1+2+4+5+...+100}{1^2+2^2+3^2+4^2+...+100^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{100}}+\frac{100}{2^{101}}\)

\(A-A2=\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)-\frac{100}{2^{101}}\)

\(=\frac{\left[1-\left(\frac{1}{2}\right)^{10}\right]}{\left(1-\frac{1}{2}\right)}-\frac{100}{2^{101}}\)
\(=\frac{\left(2^{101-1}\right)}{2^{100}}-\frac{100}{2^{101}}\)
\(\Rightarrow A=\frac{\left(2^{101-1}\right)}{2^{99}}-\frac{100}{2^{100}}\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

bài làm 

C=1+3+32+.............+3100

C=3C−C2 

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

⇒C=3100−12 

D=2/D+D/3 

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

⇒D=2101−23 

B=31×4 +54×9 +79×16 +.........+1981×100 

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100 

⇒B=1−1/100 

B=99/100 <100/100 

Vậy B<1

2 tháng 4 2023

yamate

 

4 tháng 4 2016

a,1/102+1/112+1/122+...+1/1002<1/9.10+1/10.11+1/11.12+...+1/99.100=1/9-1/10+1/10-1/11+...+1/99-1/100

                                                                                                    =1/9-1/100=91/900<3/4

Vậy 1/102+1/112+1/122+...+1/1002<3/4

b,1/22+1/32+1/42+...+1/1002<1/1.2+1/2.3+1/3.4+...+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                                                        =1-1/100=99/100

Vậy 1/22+1/32+1/42+...+1/1002<99/100

c,1/22+1/32+1/42+...+1/1002<1/22+(1/2.3+1/3.3+...+1/99.100)=1/4+(1/2-1/3+1/3-1/4+...+1/99-1/100)

                                                                                       =1/4+(1/2-1/100)=1/4+49/100=74/100<3/4=75/100

Vậy 1/22+1/32+1/42+...+1/1002<3/4

2 tháng 4 2023

1+1=3 :)))

9 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~