Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{34}{103}\)
b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)
Đặt biểu thức trong ngoặc là A ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)
\(A=1-\frac{1}{1999}\)
\(A=\frac{1998}{1999}\)
Thay vào biểu thức (*) ta có :
\(\frac{1}{2000.1999}-\frac{1998}{1999}\)
\(=\frac{1}{3998000}-\frac{1998}{1999}\)
\(=\frac{-3995999}{3998000}\)
c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)
\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\frac{100}{101}\)
\(=\frac{-50}{101}\)
_Chúc bạn học tốt_
B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7 + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15
= 0 -0-0-0-0+7/9 +13/15
= 74/45
a) Phân số nào chung mẫu thì nhóm lại => kết quả
b) 3/7 chung, lấy ra ngoài. Đừng đổi hỗn số thành phân số, cứ để đó trừ.
c) 9 * (-1/3)^3 + 1/3 = 9* (1/3)^3 * (-1) + 1/3
Có 1/3 chung, đặt ra ngoài.
d) Tương tự câu b
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)
\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)
\(=\frac{1}{7}.\left(-2\right)\)
\(=-\frac{2}{7}.\)
Chúc bạn học tốt!
1.a) Sửa lại đề: \(\frac{11}{17}\)ở mẫu chuyển thành \(\frac{11}{7}\)
\(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}=\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{7}-\frac{3}{13}}{\frac{11}{4}+\frac{11}{5}-\frac{11}{7}-\frac{11}{13}}\)\(=\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)
( vì \(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\ne0\))
2.a) \(\frac{3}{5}+\frac{3}{2}.x=\frac{-5}{7}\)\(\Leftrightarrow\frac{3}{2}.x=\frac{-5}{7}-\frac{3}{5}\)
\(\Leftrightarrow\frac{3}{2}.x=\frac{-46}{35}\)\(\Leftrightarrow x=\frac{-46}{35}:\frac{3}{2}\)\(\Leftrightarrow x=\frac{-92}{105}\)
Vậy \(x=\frac{-92}{105}\)
b) \(\left(4x-\frac{1}{3}\right).\left(\frac{3}{2}x+\frac{5}{6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=0\\\frac{3}{2}x+\frac{5}{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\\frac{3}{2}x=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{9}\end{cases}}\)
Vậy \(x=\frac{-5}{9}\)hoặc \(x=\frac{1}{12}\)
a) Ta có: \(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}\)
\(=\frac{15}{40}-\frac{8}{40}+\frac{3}{40}\)
\(=\frac{10}{40}=\frac{1}{4}\)
b) Ta có: \(\frac{21}{4}\cdot\frac{3}{8}+\frac{43}{4}\cdot\frac{3}{8}-4\cdot\frac{1}{2}\)
\(=\frac{3}{8}\left(\frac{21}{4}+\frac{43}{4}\right)-2\)
\(=\frac{3}{8}\cdot16-2\)
\(=6-2=4\)
c) Ta có: \(\frac{-5}{9}+\frac{7}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{8}{15}\)
\(=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{-2}{11}\)
\(=-1+1+\frac{-2}{11}\)
\(=\frac{-2}{11}\)
d) Ta có: \(125\%\cdot\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1.5\right)+2016^0\)
\(=\frac{5}{4}\cdot\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{16}\cdot3+1\)
\(=\frac{15}{16}+\frac{16}{16}=\frac{31}{16}\)
a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)