\(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+... + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

                                   Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                      \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\) 

                                    \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                                 \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                             Vậy \(A=\frac{4949}{19800}\)

                                      Ủng hộ mk nha các bn !!!

8 tháng 7 2016

                            Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                  \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                               \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                            \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                           \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                         Ủng hộ mk nha!!

30 tháng 7 2016

1)

\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)

\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)=\frac{1}{3}+\left(-1\right)+1=\frac{1}{3}\)

30 tháng 7 2016

Sửa đề chút nha

\(\frac{x}{2}=\frac{1}{1.2.3}+....+\frac{1}{98.99.100}\)

Ta có công thức tổng quát  \(\frac{1}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{2}\left(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\right)\)

\(\Rightarrow\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

Áp dụng vào tổng ta có

\(\frac{x}{2}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow x=\frac{4949}{4950}\)

8 tháng 5 2018

Trả lời

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

8 tháng 5 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\left(\frac{190}{380}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\frac{189}{380}\)

\(=\frac{189}{760}\)

Chúc bạn học tốt !!! 

24 tháng 4 2016

Đặt biểu thức là A, ta có:

3A= \(\frac{3}{1\times2\times3}+\frac{3}{2\times3\times4}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

3A = \(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

3A = \(\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=>A = \(\frac{3}{2}\) - \(\frac{3}{\left(n+1\right)\left(n+2\right)}\)

Phần b bạn làm tương tự

24 tháng 4 2016

tớ ko hiểu cho lắm . Bạn giải nốt phần b đc ko ?

6 tháng 7 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

6 tháng 7 2016

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{1}{19800}\)

11 tháng 4 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

9 tháng 8 2016

a) \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(A=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{1.2}-\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{9900}\)

\(A=\frac{9898}{19800}.\)

Vậy :

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(A=\frac{9898}{19800}:2\)

\(A=\frac{4949}{19800}.\)

 

9 tháng 8 2016

a) A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

A = \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

A = \(\frac{1}{2}.\frac{4949}{9900}\)

A = \(\frac{4949}{19800}\)