Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O I H M N
Gọi N là trung điểm của AC. Nối N với O và M.
Do H là trực tâm \(\Delta\)ABC => ^BAH + ^ABC = 900 (1)
Dễ thấy MN là đường trung bình \(\Delta\)ABC => MN // AB => ^NMC = ^ABC (2)
Lại có: ^NMO + ^NMC = 900 (3)
Từ (1); (2) và (3) => ^BAH = ^NMO. Tương tự: ^ABH = ^MNO
=> \(\Delta\)AHB ~ \(\Delta\)MON (g.g) => \(\frac{AH}{MO}=\frac{AB}{MN}=2\)(Do MN là đg trung bình \(\Delta\)ABC)
\(\Rightarrow\frac{AH}{MO}=\frac{AI}{MI}=2\)(Vì I là trọng tâm và AM là trung tuyến \(\Delta\)ABC)
Xét \(\Delta\)AHI và \(\Delta\)MOI: ^HAI = ^OMI (Do AH // OM); \(\frac{AH}{MO}=\frac{AI}{MI}\)=> \(\Delta\)AHI ~ \(\Delta\)MOI (c.g.c)
\(\Rightarrow\frac{IH}{IO}=\frac{IA}{IM}=2\Rightarrow IH^2=4.IO^2\).Tương tự \(HA^2=4.OM^2\)
\(\Rightarrow\sqrt{\frac{IO^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IO^2+OM^2}{4\left(IO^2+OM^2\right)}}=\frac{1}{2}.\)
ĐS: 1/2.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [O, M] Đoạn thẳng l: Đoạn thẳng [M, H] Đoạn thẳng m: Đoạn thẳng [H, O] Đoạn thẳng n: Đoạn thẳng [A, M] Đoạn thẳng p: Đoạn thẳng [M, B] Đoạn thẳng q: Đoạn thẳng [A, O] Đoạn thẳng r: Đoạn thẳng [O, B] Đoạn thẳng t: Đoạn thẳng [N, B] Đoạn thẳng b: Đoạn thẳng [E, J_1] Đoạn thẳng e: Đoạn thẳng [N, E] Đoạn thẳng f_1: Đoạn thẳng [E, B] Đoạn thẳng g_1: Đoạn thẳng [A, E] O = (6.36, -0.08) O = (6.36, -0.08) O = (6.36, -0.08) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có tam giác MAB cân tại M có MK là phân giác nên đồng thời là đường trung tuyến. Vậy thì K là trung điểm AB hay \(AK=\frac{AB}{2}\)
Ta thấy các tam giác MHO, MAO, MBO đều là các tam giác vuông chung cạnh huyền MO nên M, H, A, O B cùng thuộc đường tròn đường kính MO.
b) Do K là trung điểm AB nên theo tính chất đường kính dây cung, ta có \(\widehat{IKO}=90^o\)
Suy ra \(\Delta IKO\sim\Delta MHO\left(g-g\right)\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OI.OH=OM.OK\)
Xét tam giác vuông MBO, đường cao BK, ta có: \(OK.OM=OB^2=R^2\)
Vậy nên \(OI.OH=OK.OM=R^2\)
c) Ta thấy do trung điểm của BN cắt OM tại E nên EN = EB
Lại có EB = EA vì OM là đường trung trực của AB
Suy ra EA = EN hay tam giác EAN cân tại E.
Gọi J là trung điểm AN.
Xét tam giác cân EAN có EJ là trung tuyến nên đồng thời là đường cao.
Vậy thì \(EJ\perp OA\) hay EJ // AM.
Xét tam giác OAM, áp dụng định lý Talet ta có:
\(\frac{OE}{OM}=\frac{OF}{OA}=\frac{2}{3}\)
1) Vì một tam giác vuông luôn nội tiếp đường tròn đường kính = cạnh huyền
\(\Rightarrow\)Tam giác vuông BHF và tam giác BDH nội tiếp đường tròn đường kính BH
\(\Leftrightarrow\)4 điểm B,F,H,D cùng nằm trên đường tròn \(\Rightarrow\)Tứ giác BFHD nội tiếp đường tròn đường kính BH
a,TỨ GIÁC ĐẤY NT CM ĐC R NHA BN
b,bn cm thêm tứ giác HECD nt nứa xong suy ra góc HAE = HCE (1)
từ tứ giác ý a nt suy ra góc MDH =FBE (2)
TỨ giác EFBC nt suy ra góc FBE =FCE (3)
TỪ 1 2 VÀ 3 SUY RA DC LÀ PHÂN GIÁc
H I O A B C M K
Dựng hình vẽ như trên. Dễ thấy O là tâm của đường tròn ngoại tiếp tam giác ABC => OA = OK và OM vuông góc BC
=> OM là đường trung bình của tam giác AHK => OM // AH và OM = 1/2AH
Dễ dàng chứng minh được O,I,H thẳng hàng và OH vuông góc OM , AH vuông góc HI
Ta có : \(\sqrt{\frac{OI^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IM^2}{AI^2}}=\frac{IM}{AI}=\frac{1}{2}\)
Cm OH vuong goc voi OM kieu j