\(2^m-2^n=512\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9)  (tiếp theo)Kì thi đã tổ chức một lần và hôm nay mình xin tổ chức tiếp dành riêng cho khối 7,8 .Bạn nào chưa xem thì có thể xem lại và làm tại đây--------------------------------------------------------------------------------------Trước khi vào bài,mình có một số gợi ý nho nhỏ để các bạn có hướng làm bài tốt! Chúng ta có thể sử dụng nguyên lí...
Đọc tiếp

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9)  (tiếp theo)

Kì thi đã tổ chức một lần và hôm nay mình xin tổ chức tiếp dành riêng cho khối 7,8 .

Bạn nào chưa xem thì có thể xem lại và làm tại đây

--------------------------------------------------------------------------------------

Trước khi vào bài,mình có một số gợi ý nho nhỏ để các bạn có hướng làm bài tốt!

 Chúng ta có thể sử dụng nguyên lí Dirichlet để c/m những bài toán BĐT:

*Nguyên lí Dirichlet:

    +Cho m con thỏ vào n chiếc lồng (m>n) thì có ít nhất một chiếc lồng chứa 2 con thỏ

    +Trong 3 số thực bất kì a,b,c tồn tại ít nhất 2 số cùng không âm hoặc cùng không dương

    +Trong bài toán nếu dự đoán đẳng thức xảy ra khi a=b=c=k thì khi đó tồn tại ít nhất 2 số có tích không âm: Vd: (a-k)(b-k) không âm

--------------------------------------------------------------------------------------------

Bắt đầu cuộc thi nào!

Bài toán 1: Cho các số thực dương a, b, c.CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài toán 2: Cho các số thực dương a, b, c.CMR: \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge9\left(ab+bc+ca\right)\)

6
7 tháng 12 2018

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1. 

7 tháng 12 2018

Đặng Ly sao bạn biết đc luôn tồn tại hai số cùng lớn hơn hay  bằng 11 hoặc nhỏ hơn hay bằng 11?Nếu thế thì sai r bạn ey! Mà bạn đang làm bài nào thế?

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………Bài 1: (4,5 điểm)a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)c) Cho p là số nguyên tố. Tìm tất cả...
Đọc tiếp

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………

Bài 1: (4,5 điểm)
a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:
\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?
b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)

c) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: \(a^2+a-p=0\)
Bài 2: (4,5 điểm)

a) Cho đa thức \(F\left(x\right)=ã^3+bx^3+2014x+1\),biết \(F\left(2015\right)=2\)Hãy tính \(F\left(-2015\right)\)

b) Tìm x, biết: \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)

c, Không dùng máy tính, hãy tính giá trị của biểu thức:

\(S=\frac{\frac{3}{13}-0,6+\frac{3}{7}+0,75}{\frac{11}{7}-2,2+\frac{11}{13}+2,75}\)

Bài 3: (4.0 điểm)

a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=|x-2|+|2x-3|+|3x-4|\)

b) Tìm hai số khác 0 biết tổng, hiệu, tích của hai số đó tỉ lệ với \(3;\frac{1}{3};\frac{200}{3}\)

Bài 4: (4.0 điểm)
Cho tam giác ABC vuông ở A có AB = 6cm, AC = 8cm và đường cao AH. Tia phân
giác của góc BAH cắt BH tại D. Trên tia CA lấy điểm K sao cho CK = BC.
a) Chứng minh: KB // AD.
b) Chứng minh: \(KD\perp BC.\)
c) Tính độ dài KB.

Bài 5: (3.0 điểm)
Cho tam giác ABC có góc A tù. Kẽ\(AD\perp AB\)  và AD = AB (tia AD nằm giữa hai tiaAB và AC). Kẽ \(AE\perp AC\) và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M làtrung điểm của BC. Chứng minh rằng: \(AM\perp DE\)

11
11 tháng 6 2019

#)Giải :

Câu 1 :

a) 

- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0

- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0

=> c = 0

=> |a| = b2.b = b3

=> b3 ≥ 0 

=> b là số nguyên dương 

=> a là số nguyên âm

Vậy a là số nguyên dương, b là số nguyên âm và c = 0

11 tháng 6 2019

#)Giải :

Câu 1 :

b) x.y = x : y 

=> y= x : x = 1

=> y = -1 hoặc 1 

+) y = 1 => x + 1 = x ( vô lí )

+) y = -1 => x - 1 = -x

=> x = 1/2

Vậy y = -1 ; x = 1/2

26 tháng 12 2018

minh thay de no kho hieu sao ay

theo tiên đề ơ-clit mà là

31 tháng 5 2020

*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)

\(M=6x^2+9xy-y^2-5x^2+2xy\)

\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)

\(M=x^2+11xy-y^2\)

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)

Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)

=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Thay x = 5/2 ; y = -4/3 vào M ta được :

\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)

\(M=\frac{-1159}{36}\)

Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3

Không chắc nha 

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.