Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))
\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
câu 1:
a2+b2+c2+42 = 2a+8b+10c
<=> a2-2a+1+b2 -8b+16+c2-10c+25=0
<=> (a-1)2+(b-4)2+(c-5)2=0
<=>a=1 và b=4 và c=5
=> a+b+c = 10
ta có 2(a2+b2)=5ab
<=> 2a2+2b2-5ab=0
<=> 2a2-4ab-ab+2b2=0
<=> 2a(a-2b)-b(a-2b)=0
<=> (a-2b)(2a-b)=0
<=> a=2b(thỏa mãn)
hoặc b=2a( loại vì a>b)
với a=2b =>P=5b/5b=1
5.
\(A=\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
\(=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}+\dfrac{y}{y+\sqrt{y\left(x+y+z\right)+zx}}+\dfrac{z}{z+\sqrt{z\left(x+y+z\right)+xy}}\)
\(=\dfrac{x}{x+\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{y+\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{z+\sqrt{z^2+xy+yz+zx}}\)
\(=\dfrac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{xy+yz+zx}+\dfrac{y\left(\sqrt{y^2+xy+yz+zx}-y\right)}{xy+yz+zx}+\dfrac{z\left(\sqrt{z^2+xy+yz+zx}-z\right)}{xy+yz+zx}\)
\(=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}-x^2}{xy+yz+zx}+\dfrac{y\sqrt{\left(x+y\right)\left(y+z\right)}-y^2}{xy+yz+zx}+\dfrac{z\sqrt{\left(z+x\right)\left(y+z\right)}-z^2}{xy+yz+zx}\)
Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\) và BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)
\(A=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}-x^2}{xy+yz+zx}+\dfrac{y\sqrt{\left(x+y\right)\left(y+z\right)}-y^2}{xy+yz+zx}+\dfrac{z\sqrt{\left(z+x\right)\left(y+z\right)}-z^2}{xy+yz+zx}\)
\(=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}+y\sqrt{\left(x+y\right)\left(y+z\right)}+z\sqrt{\left(z+x\right)\left(y+z\right)}-\left(x^2+y^2+z^2\right)}{xy+yz+zx}\)
\(\le\dfrac{x.\dfrac{2x+y+z}{2}+y.\dfrac{x+2y+z}{2}+z.\dfrac{x+y+2z}{2}-\left(x^2+y^2+z^2\right)}{xy+yz+zx}\)
\(=\dfrac{xy+yz+zx}{xy+yz+zx}=1\)
\(maxA=1\Leftrightarrow x=y=z=\dfrac{1}{3}\)
1.
a, \(A=(\dfrac{1}{2};2];B=[\dfrac{2}{3};+\infty)\)
b, \(A\cap B=\left[\dfrac{2}{3};2\right];A\cup B=\left(\dfrac{1}{2};+\infty\right)\)