Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{1}{7\cdot8}\)=\(\frac{1}{56}\)
\(\frac{1}{7}-\frac{1}{8}\)=\(\frac{1}{56}\)
Nên ta điền dấu (=) vào ô trống
b, tương tự như phần a,
Chúc bạn học giỏi nhé !
\(\frac{1}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
tích mình nhe bạn
Đã trả lời ở đâu đó rồi (chi tiết)
-Nhận xét, phân tích bài toán:
So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6
=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.
\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)
\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)
..........
\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)
Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)
Rút gọn tiếp vẫn theo cách trên
\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)
\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)
\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}.\)
\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)
\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)
\(\Leftrightarrow x\cdot\frac{5}{3}=15\)
\(\Leftrightarrow x=15:\frac{5}{3}\)
\(\Leftrightarrow x=15\cdot\frac{3}{5}\)
\(\Leftrightarrow x=9.\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)
\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)
\(\Rightarrow x.\frac{5}{3}=14+1=15\)
\(\Rightarrow x=15:\frac{5}{3}=9\)
A/ \(\left(10\frac{3}{4}+3\frac{4}{5}\right)-\left(5\frac{3}{4}-1\frac{1}{5}\right)\)
\(=\left(10\frac{3}{4}-5\frac{3}{4}\right)+\left(3\frac{4}{5}+1\frac{1}{5}\right)\)
\(=5+5\)
\(=10\)
chúc bạn học tốt nha
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{99}{98}.\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4...98.99}=\frac{100}{2}=50\)
=> A = 50
BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)
Dấu bằng = xảy ra khi a = b = c = 1
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)
Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :
\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)
Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)
\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)
điền dấu <
\(\frac{1}{a.\left(a+1\right)}.\frac{1}{a}.......\frac{1}{\left(a+1\right)}\left(a ∈ N\right)\)
\(\text{Ta có :}\frac{1}{a.\left(a+1\right)}.\frac{1}{a}=\frac{1}{a.\left[a.\left(a+1\right)\right]}\)
\(=\frac{1}{a.\left(a^2+a\right)}=\frac{1}{a^3+a^2}\)
\(\text{Vì }a^2.\left(a+1\right)>\left(a+1\right)\Rightarrow\frac{1}{a^2.\left(a+1\right)}< \frac{1}{\left(a+1\right)}\)