Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(A=\dfrac{P}{Q}=\dfrac{x+3}{\sqrt{x}-2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{3}\)
Dấu '=' xảy ra khi \(x=3\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)}\)
b: Để A là số nguyên thì \(\left(\sqrt{x}-1\right)^2⋮\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)\)
=>x=0
a:
Sửa đề: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)
\(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)
\(=\dfrac{x-1-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{-x+\sqrt{x}+1}=\dfrac{-\sqrt{x}+3}{x-\sqrt{x}-1}\)
b: Để A là số nguyên thì \(\sqrt{x}\left(-\sqrt{x}+3\right)⋮x-\sqrt{x}-1\)
=>\(-x+3\sqrt{x}⋮x-\sqrt{x}-1\)
=>\(-x+\sqrt{x}+1+2\sqrt{x}-1⋮x-\sqrt{x}-1\)
=>\(x=0\)
Câu 3
a, ĐKXĐ: x>0, x\(\ne\)4
M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:
M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)
= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)
= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)
Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)
c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)
<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)
Vì 2>0 <=> \(\sqrt{x}-2< 0\)
<=> \(\sqrt{x}< 2\)
<=> x<4
Vậy để M<1 thì 0<x<4
<=>
Câu 2
a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))
<=> \(\sqrt{3x+2}=\sqrt{25}\)
<=> 3x+2=25
<=> 3x= 23
<=> x=\(\dfrac{23}{3}\)
Vậy S= \(\left\{\dfrac{23}{3}\right\}\)
a: \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
b: \(P=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6>=2\cdot5-6=10-6=4\)
Dấu = xảy ra khi x=4
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
\(dk:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)+x-2}{x\left(\sqrt{x}+1\right)}\right)\)
\(P=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\right)\)
a)
\(P=\dfrac{x}{\sqrt{x}-1}\)
b) tồn tại \(\sqrt{P}\Rightarrow\dfrac{x}{\sqrt{x}-1}\ge0\) \(\Leftrightarrow x>1\)
\(\left\{{}\begin{matrix}x>1\\P=\dfrac{x}{\sqrt{x}-1}=\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\ge2+2=4\end{matrix}\right.\)đẳng thức khi x =\(\left(\sqrt{x}-1\right)^2=1\Rightarrow x=4\) thỏa mãn
GTNN \(\sqrt{P}=2\)
Không tồn tại giá trị nhỏ nhất của A
Khi x càng gần 1 về bên phải thì giá trị của A càng nhỏ và tiến tới âm vô cùng
Ví dụ bạn thay các giá trị x=1.00001 hay 1.00000001 gì đó vào sẽ thấy
a: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
c: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>\(-10\sqrt{x}+4=\sqrt{x}+3\)
=>x=1/121
d: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}< =0\)
=>A<=2/3
Cách 1:
ĐKXĐ:\(x>0\)
Ta có:
\(A-2\sqrt{3}=\dfrac{x+3}{\sqrt{x}}-2\sqrt{3}\)
\(=\dfrac{x+3-2\sqrt{3}.\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\)
Ta có:
\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{3}\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\ge0\)
\(\Leftrightarrow A-2\sqrt{3}\ge0\)\(\Leftrightarrow A\ge2\sqrt{3}\)
Vậy \(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}-\sqrt{3}=0\Leftrightarrow x=3\left(tm\right)\)
Cách 2:
ĐKXĐ: \(x>0\)
Ta có:
\(A=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)
Áp dụng BĐT Cauchy ta có:
\(\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\)
\(\Leftrightarrow A\ge2\sqrt{3}\)
Vậy\(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}=\dfrac{3}{\sqrt{x}}\Leftrightarrow x=3\left(tm\right)\)