Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)
\(a)\dfrac{1}{4}-\dfrac{3}{4}:\left(\dfrac{-5}{8}\right)\)
\(=\dfrac{1}{4}-\dfrac{3}{4}.\dfrac{-8}{5}\)
\(=\dfrac{1}{4}-\dfrac{-6}{5}\)
\(=\dfrac{5}{20}+\dfrac{24}{20}\)
\(=\dfrac{29}{20}\)
\(b)3-\left(\dfrac{-6}{7}\right)^0+\sqrt{\dfrac{1}{16}}:2\)
\(=3-1+\sqrt{\left(\dfrac{1}{4}\right)^2}:2\)
\(=2+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=\dfrac{16}{8}+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(c)\dfrac{9^5.2^6}{4^3.3^8}=\dfrac{\left(3^2\right)^5.2^6}{\left(2^2\right)^3.3^8}=\dfrac{3^{10}.2^6}{2^6.3^8}=3^2=9\)
Sửa đề: \(C=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\right)^6\cdot3^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(C=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}\)
\(=\dfrac{2}{3\cdot4}-\dfrac{5\cdot\left(-6\right)}{9}\)
\(=\dfrac{2}{12}+\dfrac{30}{9}=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{1}{6}+\dfrac{20}{6}=\dfrac{21}{6}=\dfrac{7}{2}\)
\(1.a)\dfrac{2^3+3.26-4^3}{2^3.3^2}\)
\(=\dfrac{2^3.3.2.13-\left(2^2\right)^3}{2^3.3^2}\)
\(=\dfrac{2^4.3.13-2^6}{2^3.3^2}\)
\(=\dfrac{2^3\left(2.3.13-2^3\right)}{2^3.3^2}\)
\(=\dfrac{78-8}{9}\)
\(=\dfrac{70}{9}\)
\(b)\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^4.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{13}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}\left(1+2.5\right)}{2^{11}.3^{11}\left(2.3\right)}\)
\(=\dfrac{2.11}{3.6}\)
\(=\dfrac{11}{9}\)
\(2.3^{x-1}-3^{x+1}=90\)
\(\Leftrightarrow3^x:3-3^x.3=90\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}-3\right)=90\)
\(\Leftrightarrow3^x.\dfrac{-8}{3}=90\)
\(\Leftrightarrow3^x=\dfrac{-135}{4}\)
\(\Leftrightarrow\) \(x\) không có giá trị nào để thỏa mãn đề bài.
Vậy \(x\in\varnothing\)
nữ thám tử nổi tiếng
Đề bài câu 2 sai thì phải, nếu đề bài đc sửa lại là \(3^{x-1}+3^{x+1}=90\) thì \(x=3\) có lẽ là đúng
\(\dfrac{2^{12}.3^5-4^6.3^6}{2^{12}.9^3+8^4.3^5}=\dfrac{2^{12}.3^5-\left(2^2\right)^6.3^6.3}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}.\)
\(=\dfrac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}=\dfrac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^5+3^6\right)}=\dfrac{3^5-3^6}{3^5+3^6}=-\dfrac{486}{972}=-\dfrac{1}{2}.\)
Vậy..........
\(\frac{2^{12}.3^5-\left(2^2\right)^6.3^6}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^3}\)
\(\frac{2^{12}.3^5.\left(1-3^{ }\right)}{2^{12}.3^3.\left(3^3-1\right)}\)
\(\frac{2^{12}.3^5.\left(-2\right)}{2^{12}.3^3.8}\)
\(\frac{3^2.\left(-1\right)}{4}\)
\(\frac{-9}{4}\)
VẬy.......................
nhớ tk cho mình nha
\(A=\dfrac{6+3^2.3-6+3^2}{3^2+3.3^2-3^4}=\dfrac{\left(6-6\right)+3^2\left(3+1\right)}{3^2\left(1+3-3^2\right)}\\ =\dfrac{0+3^2.4}{3^2.\left(-5\right)}=\dfrac{-4}{5}\)