\(\dfrac{2x^2-3x-2}{2x+1}\)=3

b)\(\dfrac{x-3\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>2x^2-3x-2=6x+2

=>2x^2-9x-4=0

=>\(x=\dfrac{9\pm\sqrt{113}}{4}\)

b: \(=\dfrac{x-3\sqrt{x}+4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

25 tháng 10 2018

Bài 1

a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a

b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3

Bài 2

a) √2x-3 = 7

⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26

c) √16x - √9x = 2

⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4

Bài 3

a) √(2-√5)2 = l 2-√5 l = √5-2

b) (a - 3)2 + (a - 9)

= a2 - 6a + 9 + a - 9 = a2 - 5a

c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\dfrac{-3\sqrt{x}+9}{x-9}\)

25 tháng 10 2018

mình cảm ơn bạn nhiều lắm

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4

a: \(\Leftrightarrow4x^2-2\sqrt{3}x-1+\sqrt{3}=0\)

\(\text{Δ}=\left(-2\sqrt{3}\right)^2-4\cdot4\cdot\left(\sqrt{3}-1\right)\)

\(=12-16\sqrt{3}+16=28-16\sqrt{3}=\left(4-2\sqrt{3}\right)^2\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{2\sqrt{3}-4+2\sqrt{3}}{8}=\dfrac{4\sqrt{3}-4}{8}=\dfrac{\sqrt{3}-1}{2}\\x_2=\dfrac{2\sqrt{3}+4-2\sqrt{3}}{8}=\dfrac{1}{2}\end{matrix}\right.\)

b: Đặt \(x^2=a\)

Pt sẽ là \(a^2-7a+3=0\)

\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot3=49-12=37>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{37}}{2}\left(nhận\right)\\a_2=\dfrac{7+\sqrt{37}}{2}\left(nhận\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{7-\sqrt{37}}{2}}\\x=\pm\sqrt{\dfrac{7+\sqrt{37}}{2}}\end{matrix}\right.\)

c: \(\Leftrightarrow2x^2-x^2+4=-x-2\)

\(\Leftrightarrow x^2+4+x+2=0\)

\(\Leftrightarrow x^2+x+6=0\)

\(\text{Δ}=1^2-4\cdot1\cdot6=-23< 0\)

Do đó:Phương trình vô nghiệm

28 tháng 6 2018

a) \(13-\sqrt{\left(8x-1\right)^2}=\sqrt{x^2}\) (*)

\(\Leftrightarrow13-\left|8x-1\right|=\left|x\right|\)

Th1: \(8x-1\ge0\Leftrightarrow x\ge\dfrac{1}{8}\)

(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(N\right)\)

Th2: \(x\le0\)

(*) \(\Leftrightarrow13+8x-1=-x\Leftrightarrow9x=-12\Leftrightarrow x=-\dfrac{4}{3}\left(N\right)\)

Th3: \(\left\{{}\begin{matrix}8x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\dfrac{1}{8}\le x\le0\) (vô lý)

Th4: \(\left\{{}\begin{matrix}8x-1\le0\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\dfrac{1}{8}\)

(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(L\right)\)

Kl: x= 14/9 , x= -4/3

28 tháng 6 2018

b) \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(2x+3\right)^2}=3\Leftrightarrow\left|x+1\right|+\left|2x+3\right|=3\)(*)

Th1: \(x\ge-1\)

(*) \(\Leftrightarrow x+1+2x+3=3\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\left(N\right)\)

Th2: \(x\le-\dfrac{3}{2}\)

(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(N\right)\)

Th3: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow-1\le x\le-\dfrac{3}{2}\) (vô lý)

Th4: \(\left\{{}\begin{matrix}x+1\le0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}\le x\le-1\)

(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(L\right)\)

Kl: x= -1/3 , x= -7/3

a: ĐKXĐ: \(\left\{{}\begin{matrix}3-x>=0\\x>=0\\3-x< >4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le3\\x< >-1\end{matrix}\right.\Leftrightarrow0\le x\le3\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\7-2x>=0\\x-2< >7-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\le x\le\dfrac{7}{2}\\x< >3\end{matrix}\right.\)

a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)

b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)

\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)

c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)

\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)

9 tháng 10 2018

Điều kiện để biểu thức có nghĩa là:

1) 5x - 10 ≥ 0

⇔ 5x ≥ 10

⇔ x ≥ 2.

2) 1 + x\(^2\) > 1 ∀ x

⇒ Luôn có nghĩa với mọi giá trị x

3) 3 - x ≥ 0 và 2 - x > 0

⇔ x < 3 và x < 2

⇔ x < 2

4) - 1 + x > 0

⇔ x > 1.