Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1997x1996-995}{1995x1997+1002}=\frac{1997x\left(1995+1\right)-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1997x1-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1997-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1002}{1995x1997+1002}=1\)
\(\frac{1997.1996-97}{1995.1997-1000}=\frac{1997.1995+1997-97}{1997.1995-1000}=\frac{1997.1995-1000}{1997.1995-1000}=1\)
\(\frac{1997\times1996-97}{1995\times1997-1000}=\frac{1997\times1995+1997-97}{1997\times2995+1000}=\frac{1997\times1995+1000}{1997\times1995+1000}=1\)
Ta có :
\(\frac{1995.1997-1}{1996.1995+1994}\)
\(=\frac{1995.\left(1996+1\right)-1}{1995.1996+1994}\)
\(=\frac{1995.1996+1995-1}{1995.1996+1994}\)
\(=\frac{1995.1996+1994}{1995.1996+1994}=1\)
Ủng hộ mk nha !!! ^_^
\(\frac{1995x1997-1}{1996x1995+1994}\)
\(=\frac{1995x1996+1995-1}{1996x1995+1994}\)
\(=\frac{1995x1996+1994}{1996x1995+1994}=1\)
\(\frac{1995x1997-1}{1996x1995+1994}\)
= \(\frac{3984015-1}{3982020+1994}\)
= \(\frac{3984014}{3984014}\)
= \(\frac{1}{1}\)
= \(1\)
Aswer : \(1\)
và cả câu này nữa
\(\frac{399x45+55x399}{1995x1996-1991x1995}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{1}-\frac{1}{8}\)
\(=\frac{7}{8}\)'
1995x(1996+1)-998
997+1995x1996
=>
1995x(1996+1)-998
997+1995x1996
=>
1995x1996+1995-998
997+1995x1996
=>1995x1996+997
997+1995x1996
=1
\(A=\dfrac{1997\times1996-1}{1995\times1997+1996}=\dfrac{1997\times\left(1995+1\right)-1}{1995\times1997+1996}=\dfrac{1995\times1997+1997-1}{1995\times1997+1996}=\dfrac{1995\times1997+1996}{1995\times1997+1996}=1\)
`A=(1997xx1996-1)/(1995xx1997+1996)`
`=(1997xx(1995+1)-1)/(1995xx1997+1996)`
`=(1997xx1995 +1997-1)/(1995xx1997+1996)`
`= (1997xx1995+1996)/(1995xx1997+1996)`
`=1`