Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 4 số tự nhiên chẳn liên tiếp là a ; a+2 ; a+4 ; a+6
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)\)
\(=a+a+2+a+4+a+6=4a+12\)
Vì 4a chia hết cho 4 và 12 chia hết 4.
\(\Rightarrow4a+12\)chia hết cho 4.
Vậy tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4.
b) Gọi 5 số tự nhiên chẵn liên tiếp là: a ; a+2 ; a+4 ; a+6 ; a+8
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)\)
\(=a+a+2+a+4+a+6+a+8=5a+20\)
Vì 5a chia hết chia 5 và 20 cũng chia hết cho 5.
\(\Rightarrow5a+20\)chia hết cho 5.
Vậy tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5.
a) Gọi 4 số liên tiếp là a , (a+1), (a+2) , (a+3)
suy ra tổng của 4 sồ liên tiếp là :
a+a+1+a+2+a+3 = 4a+ 4 + 1
a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)
+) Nếu 2 số đó cùng lẻ
Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)( \(a,b\inℕ\))
Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
b) Gọi 3 số tự nhiên liên tiếp là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a )Gọi 3 số tự nhiên liên tiếp đó là :3k; 3k + 1 ; 3k + 2 ( k thuộc N )
- > Tổng 3 số đó là 3k + ( 3k + 1 ) + ( 3k + 2 ) = 9k +3 = 3 ( 3k + 1 )
Vì 3 ( 3k + 1 ) chia hết cho 3 - > đpcm
b ) Gọi 5 số chẵn liên tiếp là 5k ; 5k + 1 ; 5k + 2 ; 5k + 3; 5k + 4 ( k thuộc N, k chẵn )
- > Tổng 5 số đó là : 5k + ( 5k +1 ) + ( 5k +2 ) + ( 5k + 3 ) + ( 5k + 4 )
= 25 k + 10
25k = 25 . 2m ( k là số chẵn nên đc viết dưới dạng 2m, m thuộc N )
= 50m chia hết cho 10; 10 cũng chia hết cho 10
Mà tổng 2 số chia hết cho 10 sẽ chia hết cho 10
- > đpcm
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
gọi 2 số đó là a và a + 2
ta có: a + a + 2 = 2a + 2
mà 2a là số chẵn nên 2a + 2 cũng là số chẵn
=> a + a + 2 chẵn
=> đpcm
t i c k nhé!!! 45645676578769
b) gọi 3 số đó là a;b;c ta có :
a:3 = ?(dư 1)
b:3=(?(duw2)
c:3 = ?(dư 0)
=> a+b+c :3 (dư 0)
a+b+c:3(dư 0)