Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
\(x\left(x-1\right)-3x+3=0\)
<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
\(3x\left(x-2\right)+10-5x=0\)
<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)
<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)
<=> \(\left(3x-5\right)\left(x-2\right)=0\)
<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
học tốt
A=4(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=8(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^8-1)(3^8+1)....(3^64+1)
2A=(3^16-1)...(3^64+1)
......
2A=(3^64-1)(3^64+1)
2A=3^128-1
A=(3^128-1)/2
=> A>B
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{16}-1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{64}-1\right)\left(3^{64}+1\right)\Leftrightarrow4A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{4}\)
Ta có \(\frac{3^{128}-1}{4}< 3^{128}-1\Rightarrow A< B\)
Lâm Huyền:Bạn sai đề rồi B phải là 3128-1 chứ !
A = 12 – 22 + 32 – 42 + … – 20042 + 20052
A = 1 + (32 – 22) + (52 – 42)+ …+ ( 20052 – 20042)
A = 1 + (3 + 2)(3 – 2) + (5 + 4 )(5 – 4) + … + (2005 + 2004)(2005 – 2004)
A = 1 + 2 + 3 + 4 + 5 + … + 2004 + 2005
A = ( 1 + 2002 ). 2005 : 2 = 2011015
b/ B = (2 + 1)(22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = (22 - 1) (22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = ( 24 – 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264
B = …
B =(232 - 1)(232 + 1) – 264
B = 264 – 1 – 264
B = - 1
xin lỗi nha chỗ câu a mình lộn
chỗ (1+2002)x2005:2=2011015 là sai nha
(1+2005)x2005:2= 2011015 là đúng nha
Ta có : 46 - 210 = (22)6 - 210 = 212 - 210 = 210(22 - 1) = 210.3 chia hết cho 3
b) Ta có: (1/64)16= ((1/2)6)16= (1/2)96
Vậy (1/2)100<(1/2)96