\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Ta có: \(\frac{n}{n+1}< 1\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)

\(\Rightarrow A< B\)

b. mình ko biết làm 

c. mình cũng ko biết làm

d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt nhé

9 tháng 6 2017

a). n/n+1  < n+2/n+3 

b). n/n+3 > n−1/n+4 

c). n/2n+1 < 3n+1/6n+3 

k mk nha

9 tháng 6 2017

\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)

=>n/n+1<n+2/n+3

vậy........

b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)

vậy.....

c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)

vậy.......

19 tháng 4 2017

câu b dễ

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm