Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra ta có:
2*x+y*4-8=6+x^2+3y+4^y-8
=x^2+3y+4^y-2 là số nguyên tố
Do x,y là các số nguyên tố nên x\(\ge\)2,y\(\ge\)2
\(\Rightarrow\)A=x^2+3y+4^y-8\(\ge\)3
Nếu x và y cùng tính chẵn lẻ thì x^2 + 3y là số chẵn nên A= x^2 + 3y + 4^y– 2 là số chẵn , mà A>2 nên A là hợp số (vô lý)
Do đó x chẵn hoặc y chẵn, mà x, y là các số nguyên tố nên x = 2 hoặc y = 2.Nếu x = 2 ta có:
A = 3y + 4^y +2 (đã rút gọn)
Do 4^y chia 3 luôn dư 1 nên 3y + 4^y +2 chia hết cho 3 mà 3y + 4^y +2 >= 3 nên A là hợp số (vô lý)
Nếu y = 2 thì A = x^2 + 20 (đã rút gọn).
Nếu x không chia hết cho 3 thì x^2 chia 3 dư 1 nên x^2 + 20 chia hết cho 3 nên A là hợp số (vô lý)
Do đó x chia hết cho 3 mà x là số nguyên tố nên x = 3
Thử lại với x = 3; y = 2 thì A= x2 + 3y + 4y – 2 = 29 (là số nguyên tố)
Vậy x = 3 và y = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Vì p;(p+1);(p+2) là 3 số tự nhiên liên tiếp => 1 trong 3 số sẽ chia hết cho cả 2;3 .Vậy 1trong 3 số đó sẽ là hợp số vì chia hết cho 3 số(tính cả chia hết cho 1)nên p+2 là hợp số nếu p;p+1 là số nguyên tố
c)Vì x^2 +y=23
=>x^2<23=>x∈ {2;3}
Ta có:y= 23-x2có hai TH
TH1:y=23-2^2=23-4=19(chọn)
TH2:y=23-3^2=23-9=12(loại)
Vậy y=19;x=2