\(\frac{10}{27}\)+\(\frac{9}{16}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

A=\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{9}+\frac{1}{10}-\frac{1}{10}\)

A= 0

=> A>\(\frac{65}{132}\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

5 tháng 5 2019

\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot.....\cdot\frac{899}{30^2}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot.....\cdot\frac{29\cdot31}{30\cdot30}\)

\(=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{3}{4}\cdot\frac{5}{4}\cdot....\cdot\frac{29}{30}\cdot\frac{31}{30}\)

\(=\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{29}{30}\right)\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot....\cdot\frac{31}{30}\right)\)

\(=\frac{1}{30}\cdot\frac{31}{2}\)

\(=\frac{31}{60}\)

b, \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

Ta có:

\(\frac{3}{15}< \frac{3}{10}=\frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{11}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{12}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{13}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow\frac{3\cdot5}{15}< A< \frac{3\cdot5}{10}\)

\(\Rightarrow1< A< \frac{15}{10}=\frac{3}{2}\)

\(\frac{3}{2}< 2\)

\(\Rightarrow1< A< 2\)

c ,Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

5 tháng 5 2019

thanks!!!vui

14 tháng 3 2017

Làm ơn giải ra luôn hộ

14 tháng 3 2017

Ta có: A = \(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}\right)\)

Nhận xét: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow A>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)

Vậy A > 1 (đpcm)

+)Ta có:\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+..........+\frac{1}{99}+\frac{1}{100}\)(có (100-10):1+1=91 số hạng)

\(\Rightarrow A=\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{54}\right)+\frac{1}{55}+\left(\frac{1}{56}+\frac{1}{57}+.............+\frac{1}{100}\right)>\)

\(\left(\frac{1}{54}+\frac{1}{54}+........+\frac{1}{54}\right)+\frac{1}{55}+\left(\frac{1}{100}+\frac{1}{100}+........+\frac{1}{100}\right)\)

\(\Rightarrow A>\frac{45}{54}+\frac{1}{55}+\frac{45}{100}=\frac{5}{6}+\frac{1}{55}+\frac{9}{20}=\frac{5}{6}+\frac{9}{20}+\frac{1}{55}=\frac{50}{60}+\frac{27}{60}+\frac{1}{55}\)\(=\frac{77}{60}+\frac{1}{55}>1\)(vì \(\frac{77}{60}>1\))

\(\Rightarrow A>1\)(ĐPCM)
Chúc bn học tốt

5 tháng 3 2020

thanks nhìu!

Bài 1 : 

\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)

     \(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)

      \(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)

      \(=\frac{13.\left(84+70+63+60\right)}{2520}\)

       \(=\frac{13.277}{2520}\)

Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)

Vậy a chia hết cho 13

Bài 2 :

Ta có :  \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)

Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)

Từ (1)  ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau

Suy ra ;\(b'⋮b\left(2\right)\)

Tương tự ta cũng có \(b⋮b\left(3\right)\)

Từ (2 ) và (3 ) suy ra \(b=b'\)

Chúc bạn học tốt ( -_- )