\(Cho\) \(a,b\) \(\ne0\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

a/ Ta có: `2a = 3b => a/3 = b/2`

Đặt `a/3 = b/2 = k`   \(\left(k\ne0\right)\)

`=> a = 3k ; b = 2k`

`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)

Vậy `M = 11/38`.

b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015

Vì \(20142015⋮3\) nên \(a^2⋮3\)

\(\Rightarrow a^2⋮3^2\)

\(\Rightarrow a^2⋮9\)

Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)

`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015

\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương   (đpcm)

19 tháng 9 2020

Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)

\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)

Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)

Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)

Vậy a và b là hai số chính phương liên tiếp.

16 tháng 3 2017

I don't know

16 tháng 3 2017

Bài 2:

Giải:

Ta có: \(\frac{a}{b}=-\frac{2}{3}\Rightarrow\frac{a}{-2}=\frac{b}{3}\)

Đặt \(\frac{a}{-2}=\frac{b}{3}=k\Rightarrow a=-2k;b=3k\)

\(M=\frac{5a+2b}{3a-4b}=\frac{-10k+6k}{-6k-12k}=\frac{-4k}{-18k}=\frac{2}{9}\)

Vậy \(M=\frac{2}{9}\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

29 tháng 5 2020

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\) 

+) \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\) \(\Rightarrow\frac{1}{a}=\frac{1}{c}\) => a = c    (1)

+) \(\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)\(\Rightarrow\frac{1}{b}=\frac{1}{a}\) => a = b     (2)

Từ (1), (2) => a = b = c

Lại có: (a - b)3 + (b - c)3 + (c - a)3 = (a - a)3 + (b - b)3 + (c - c)3 = 03 + 03 + 03 = 0

11 tháng 8 2016

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có:\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a\cdot a^2+a\cdot a^2+a\cdot a^2}{a^3+a^3+a^3}\)\(\Rightarrow\frac{3a^3}{3a^3}=1\)

25 tháng 10 2016

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ac}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

<=> a = b = c

Vậy \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

22 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

a)Xét \(VT=\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

Xét \(VP=\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

Từ (1) và (2) =>Đpcm

b)Xét \(VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)

Xét \(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

c)Xét \(VT=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\left[\frac{b}{d}\right]^2=\frac{b^2}{d^2}\left(1\right)\)

Xét \(VP=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

 

22 tháng 10 2016

a/ theo bài ra, ta có:

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)

áp dụng tính caahts dã y tỉ số bằng nhau ta có :

\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)

=> \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\\ \Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(đpcm\right)\)

b/ theo bài ra, ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)

ta có:

\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)

từ 1 và 2 => đpcm

c/ theo bài ra, ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

đặt \(\frac{a}{c}=\frac{b}{d}=k\)

ta có: a = kc

b = kd

=> \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kc+kd}{c+d}\right)^2=\left(\frac{k\left(c+d\right)}{c+d}\right)^2=k^2\) (1)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kc\right)^2+\left(kd\right)^2}{c^2+d^2}=\frac{k^2c^2+k^2d^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)

từ 1 và 2 => đpcm

2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2

23 tháng 10 2019

Áp dụng dãy tỉ số bằng nhau ta có: 

 \(\frac{2a+b}{c}\)=\(\frac{2b+c}{a}\)=\(\frac{2c+a}{b}\)=\(\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3a+3b+3c}{a+b+c}=3\)

=> \(\frac{2a+b}{c}\)=3

\(\frac{a}{2b+c}=\frac{1}{3}\)

\(\frac{b}{2c+a}=\frac{1}{3}\Rightarrow\frac{3b}{2c+a}=1\)

=> \(A=3+\frac{1}{3}+1=\frac{13}{3}\)

20 tháng 3 2020

Áp dụng tính chất của dãy tỉ số bằng nhau 

\(\Rightarrow\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{3a+3b+3c}{a+b+c}\)\(=\frac{3\left(a+b+c\right)}{a+b+c}\)\(=3\)

 => \(\hept{\begin{cases}\frac{2a+b}{c}=3\\\frac{2b+c}{a}=3\\\frac{2c+a}{b}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a+b=3c\\2b+c=3a\\2c+a=3b\end{cases}}\)

\(\Rightarrow A\)\(=\frac{3c}{c}+\frac{a}{3a}+\frac{3b}{3b}=3+\frac{1}{3}+1=\frac{13}{3}\)

\(A=\frac{13}{3}\)