\(a,b,c\ge0;a+b+c=3\)

tìm Max P = \(\frac{a}{a^2+b^3}+\frac{b}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Bài 1:

a) Ta thấy:

\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)

\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$

b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Cách giải khác đây: 

Áp dụng bđt bunhia copxki ta có \(A^2\le6\left(a+b+c\right)=6\)vì a+b+c=1

nên \(A\le\sqrt{6}\)

Dấu = xảy ra <=>a=b=c=1/3

3 tháng 5 2020

t nghĩ ngoài SOS ra thì không còn lời giải sơ cấp nào khác, nếu Max = 1, không có Wolfram Alpha cũng không chắc lắm.

 Thử pqr xem nào:

\(P=\frac{ab^2+bc^2+ca^2+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+6}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\left(a-b\right)\left(b-c\right)\left(c-a\right)+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\le\frac{\frac{1}{2}\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}+\frac{1}{2}\left(pq-3r\right)+4p}{r+2q+4p+8}\le1\)

Có: \(p^2-2q=3\therefore q=\frac{\left(p^2-3\right)}{2}\). Từ đó quy bài toán về chứng minh:

\(\frac{5}{2}r+\frac{\left(14-3p\right)\left(3p+1\right)^2}{108}+\frac{263}{54}\ge\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}\)

Vì \(0< p=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên cả 2 vế đều không âm.

Lúc này bất đẳng thức tương đương: 

$${\frac{173}{8}}+15/2\,p+25\,r+{\frac {107\,{p}^{2}}{8}}+13\,{r}^{2}+5 \,r{p}^{2}-5/2\,r{p}^{3}+21/2\,rp-{p}^{3}-1/8\,{p}^{4}-1/2\,{p}^{5}+1/ 8\,{p}^{6} \geqq 0$$

(Đoạn này gõ Latex, không hiên thì vào thống kê hỏi đáp nhá)

\(\Leftrightarrow f\left(r\right)\ge0\). Mặt khác \(f'\left(r\right)=26r+\frac{\left(-15p+10+2\sqrt{415}\right)\left(15p-10+\sqrt{415}\right)^2}{1350}+\frac{904}{27}-\frac{83\sqrt{415}}{135}>0\)

Nên khi r giảm thi f giảm. Mặt khác do \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)

Nên \(r\ge\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-3q\right)^3}+9pq\right)=\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\)

Vì vậy \(f\left(r\right)\ge f\left(\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\right)\ge0\)

Bác Cool Kid chứng minh BĐT 1 biến ở cuối thử xem:v

3 tháng 5 2020

Chết, cách kia sai rồi, đánh thiếu số 6 hèn gì không ra -_-

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!

6 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new

Help meeee! thanks nhiều ạ

8 tháng 12 2019

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?