K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2020

Trước hết ta chứng minh BĐT sau:

\(x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Ta sẽ chứng minh \(\frac{c^2}{c^2+ab+1}\le\frac{c}{a+b+c}\) (1)

Thật vậy, BĐT tương đương: \(\frac{2c^2}{2c^2+2ab+a^2+b^2+c^2}\le\frac{c}{a+b+c}\)

\(\Leftrightarrow2c^2\left(a+b+c\right)\le c\left(a^2+b^2+2ab+3c^2\right)\)

\(\Leftrightarrow c\left(a^2+b^2+2ab+c^2-2ac-2bc\right)\ge0\)

\(\Leftrightarrow c\left(a+b-c\right)^2\ge0\) (luôn đúng với mọi số thực không âm)

Đồng thời áp dụng hệ quả đã chứng minh ban đầu:

\(\frac{a^2}{a^2+bc+1}=\frac{2a^2}{2a^2+\left(2bc+a^2+b^2+c^2\right)}\le\frac{2a^2}{2a^2+2a\left(b+c\right)}=\frac{a}{a+b+c}\) (2)

Tương tự ta được: \(\frac{b^2}{b^2+ac+1}\le\frac{b}{a+b+c}\) (3)

Cộng vế với vế (1); (2); (3) \(\Rightarrow P\le1\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

Giờ bận ăn cơm, có gì buổi tối bài nào làm được thì mình làm tiếp

11 tháng 10 2020

Dạ em cảm ơn ạ, mong anh giúp em. Chúc anh ăn ngon miệng

NV
11 tháng 10 2020

Áp dụng BĐT đã chứng minh ở phần trước:

\(\left(a+b+c\right)^2\le2k\left(1+bc\right)^2=4\left(1+bc\right)^2\)

\(\Leftrightarrow a^2\left(a+b+c\right)^2\le4a^2\left(1+bc\right)^2\)

\(\Rightarrow a\left(a+b+c\right)\le2a\left(1+bc\right)\)

\(\Rightarrow\frac{a}{1+bc}\le\frac{2a}{a+b+c}\)

Hoàn toàn tương tự, ta có: \(\frac{b}{1+ac}\le\frac{2b}{a+b+c}\) ; \(\frac{c}{1+ca}\le\frac{2c}{a+b+c}\)

Cộng vế với vế: \(P\le2\)

\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

NV
11 tháng 10 2020

c/

Nếu dấu là trừ:

BĐT cần chứng minh tương đương:

\(\left(a+b+c-\frac{2}{k}abc\right)^2\le2k\)

Ta có:

\(VT=\left[\left(a+b\right).1+c\left(1-\frac{2}{k}ab\right)\right]^2\)

\(VT\le\left[\left(a+b\right)^2+c^2\right]\left[1+\left(1-\frac{2}{k}ab\right)^2\right]\)

\(VT\le\left(k+2ab\right)\left(2-\frac{4}{k}ab+\frac{4a^2b^2}{k^2}\right)\)

\(VT\le2k-\frac{4}{k}a^2b^2+\frac{8}{k^2}\left(ab\right)^3\)

Do đó ta chỉ cần chứng minh: \(2k-\frac{4}{k}\left(ab\right)^2+\frac{8}{k^2}\left(ab\right)^3\le2k\)

\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2-\frac{2}{k^2}\left(ab\right)^3\ge0\)

\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\)

Từ giả thiết \(k=a^2+b^2+c^2\ge a^2+b^2\ge2ab\Rightarrow\frac{2ab}{k}\le1\)

\(\Rightarrow1-\frac{2ab}{k}\ge0\Rightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\) (đpcm)

NV
11 tháng 10 2020

À ghi lộn đó bạn, bạn thay lại hệ số đúng thôi, ko ảnh hưởng gì cả vì số hạng đó được bỏ qua trong quá trình chứng minh

NV
2 tháng 12 2021

\(P=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+1}{a+b+c-abc}=\dfrac{\left(a+b+c\right)^2+1}{a+b+c-abc}\ge\dfrac{\left(a+b+c\right)^2+1}{a+b+c}\)

\(\Rightarrow P\ge a+b+c+\dfrac{1}{a+b+c}\) (1)

\(P=\dfrac{a^2+b^2+c^2+3\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}=\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(P=\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{a+b+c}\left(\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+c+b}{a+c}\right)\)

\(P=\dfrac{1}{a+b+c}\left(3+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\right)\)

\(P\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2}\right)=\dfrac{3}{a+b+c}+\dfrac{a+b+c}{2}\)

\(\Rightarrow3P\ge\dfrac{3}{2}\left(a+b+c\right)+\dfrac{9}{a+b+c}\) (2)

Cộng vế (1) và (2):

\(\Rightarrow4P\ge\dfrac{5}{2}\left(a+b+c\right)+\dfrac{10}{a+b+c}\ge2\sqrt{\dfrac{50\left(a+b+c\right)}{2\left(a+b+c\right)}}=10\)

\(\Rightarrow P\ge\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;0\right)\) và các hoán vị

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

12 tháng 7 2018

Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Chứng minh tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

dấu = xảy ra <=> a=b=c=1

^_^

NV
8 tháng 6 2021

\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)

\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)

Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)

Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Cách 2:

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)

 Ta sẽ CM: 

\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)

\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)

Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$

Áp dụng BĐT AM-GM:

$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$

Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$

Ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.