">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 10 2021

a) \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}=\frac{x-2y+3z}{6-2.5+3.4}=\frac{40}{8}=5\)

\(\Leftrightarrow\hept{\begin{cases}x=5.6=30\\y=5.5=25\\z=5.4=20\end{cases}}\)

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9\)

\(\Leftrightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.4=36\end{cases}}\)

c) \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{4x+3y-2z}{4.3+3.8-2.5}=\frac{52}{26}=2\)

\(\Leftrightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)

f) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}=\frac{y-x}{7-5}=\frac{48}{2}=24\)

\(\Leftrightarrow\hept{\begin{cases}x=24.5=120\\y=24.7=168\\z=24.2=48\end{cases}}\)

DD
7 tháng 10 2021

d) \(\frac{2x}{5}=\frac{4y}{3}=\frac{3z}{10}\Leftrightarrow\frac{x}{30}=\frac{y}{9}=\frac{z}{40}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{30}=\frac{y}{9}=\frac{z}{40}=\frac{x+y+z}{30+9+40}=\frac{39,5}{79}=0,5\)

\(\Leftrightarrow\hept{\begin{cases}x=0,5.30=15\\y=0,5.9=4,5\\z=0,5.40=20\end{cases}}\)

e) \(10x=15y=21z\Leftrightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{3.21-7.14+5.10}=\frac{30}{15}=2\)

\(\Leftrightarrow\hept{\begin{cases}x=2.21=42\\y=2.14=28\\z=2.10=20\end{cases}}\)

24 tháng 9 2021

☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭

24 tháng 9 2021

154648

26 tháng 10 2021

Mình không biết nha

26 tháng 10 2021

Bài 3 :

A B S M C P N x y 1 2 z 1 2

a) Kéo dài tia NM và NM cắt BC tại S

Khi đó ta có :

\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)

b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)

\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)

Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)

Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong 

=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau

1.Điều kiện : \(x\ge0\)

\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)

\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)

                                                                                \(=3x+13=4x\)

\(\Rightarrow4x-3x=13\)

\(\Rightarrow x=13\)

Vậy \(x=13\)

2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12\)

\(=6\left(3^n.5+2^n.2\right)⋮6\)

4.a)

  • \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)

\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)

Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)

hay \(3^{34}>5^{20}\)

  • \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)

b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

23 tháng 10 2016

làm nhanh giúp e đc ko ạ ^^

23 tháng 10 2016

Bạn làm ơn chụp ảnh rõ hơn được không? Mình không nhìn thấy gì hết ớ!

18 tháng 11 2021

bài 5 : Gọi số táo ; cam và nho lần lượt là a ; b ; c ( quả ) ( a , b , c ∈ N* ) và lần lượt tỉ lệ với 4 ; 7 ; 9

Theo bài ra , ta có :

5a - b - c = 16

a\(\dfrac{a}{4}=\dfrac{b}{7}=\dfrac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{4}=\frac{b}{7}=\frac{c}{9}=\frac{5a}{20}=\frac{5a-b-c}{20-7-9}=\frac{16}{4}\)= 4

=> a= 4.4=16 
     b= 4.7= 28

      c=4.9=36

7 tháng 9 2021

Bài 4

a/ \(x=\widehat{ABC};y=\widehat{ADC}\)

Ta có a//b; \(a\perp c\Rightarrow b\perp c\Rightarrow x=\widehat{ABC}=90^o\)

Xét tứ giác ABCD

\(y=\widehat{ADC}=360^o-\widehat{BAD}-\widehat{ABC}-\widehat{BCD}\) (tổng các góc trong của tứ giác = 360 độ)

\(\Rightarrow y=\widehat{ADC}=360^o-90^o-90^o-130^o=50^o\)

b/ Kéo dài n về phí B cắt AC tại D

\(\Rightarrow\widehat{CBD}=180^o-\widehat{nBC}=180^o-105^o=75^o\)

Xét tg BCD có

\(\widehat{BDC}=180^o-\widehat{CBD}-\widehat{BCD}=180^o-75^o-60^o=45^o=\widehat{mAC}\)

=> Am//Bn (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc đồng vị bằng nhau thì chúng // với nhau)

Bài 5

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Ta có \(\frac{a}{3b}=\frac{b}{3c}=\frac{a+b}{3\left(b+c\right)}=\frac{1}{3}\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\)

\(\frac{b}{3c}=\frac{c}{3a}=\frac{b+c}{3\left(c+a\right)}=\frac{1}{3}\Rightarrow\frac{b+c}{c+a}=1\Rightarrow b+c=c+a\)

\(\Rightarrow a+b=b+c=c+a\)

\(\frac{c}{3a}=\frac{a}{3b}=\frac{c+a}{3\left(a+b\right)}=\frac{1}{3}\Rightarrow\frac{c+a}{a+b}=1\)

Từ \(\frac{a+b}{b+c}=\frac{a}{b+c}+\frac{b}{b+c}=\frac{a}{b+c}+\frac{b}{c+a}=1\) (1)

Từ \(\frac{b+c}{c+a}=\frac{b}{c+a}+\frac{c}{c+a}=\frac{b}{c+a}+\frac{c}{a+b}=1\) (2)

Từ \(\frac{c+a}{a+b}=\frac{c}{a+b}+\frac{a}{a+b}=\frac{c}{a+b}+\frac{a}{b+c}=1\) (3)

Công 2 vế của (1) (2) và (3)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}=3\)

\(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=3.\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)

\(\Rightarrow M=2018\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\frac{2018.3}{2}=3027\)