Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng công thức phương trình tiếp tuyến tại \(x_0\) là:
\(y=f'(x_0)(x-x_0)+f(x_0)\)
Ta có phương trình hai đường thẳng là tiếp tuyến của đồ thị \(y=x^2-4x+5\) tại \(A,B\) là:\(\left\{\begin{matrix}y=-2x+4\\y=4x-11\end{matrix}\right.\)
Ta có: \(x^2-4x+5-(-2x+4)=x^2-2x+1=(x-1)^2=0\Leftrightarrow x=1\)
\(x^2-4x+5-(4x-11)=(x-4)^2=0\Leftrightarrow x=4\)
\((-2x+4)-(4x-11)=0\Leftrightarrow x=\frac{5}{2}\)
Do đó diện tích hình phẳng giới hạn bởi các đường đã cho là:
\(\int ^{4}_{\frac{5}{2}}|(x-4)^2|dx+\int ^{\frac{5}{2}}_{1}|(x-1)^2|dx=\frac{9}{8}+\frac{9}{8}=\frac{9}{4}\)
\(\Rightarrow a+b=9+4=13\)
\(z\ne4i\Rightarrow\left\{{}\begin{matrix}a\ne0\\b\ne4\end{matrix}\right.\)
\(\frac{z-4}{z-4i}=\frac{a-4+bi}{a+\left(b-4\right)i}=\frac{\left(a-4+bi\right)\left(a-\left(b-4\right)i\right)}{a^2-\left(b-4\right)^2}=\frac{a\left(a-4\right)+b\left(b-4\right)-\left[\left(a-4\right)\left(b-4\right)-ab\right]i}{a^2-\left(b-4\right)^2}\)
Số phức trên là thuần ảo khi và chỉ khi \(\left\{{}\begin{matrix}a\left(a-4\right)+b\left(b-4\right)=0\\\left(a-4\right)\left(b-4\right)-ab\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-2\right)^2=8\\a+b-4\ne0\end{matrix}\right.\)
\(\Rightarrow\) Tập hợp \(z\) là điểm \(M\left(a;b\right)\) thuộc đường tròn (C) tâm \(I\left(2;2\right)\) bán kính \(R=2\sqrt{2}\) và khác 2 điểm \(A\left(0;4\right)\) và \(B\left(4;0\right)\)
\(P=\left|z\right|^2=a^2+b^2=OM^2\)
\(P_{max}\) khi M trùng giao điểm của đường thẳng OI và đường tròn (giao điểm năm khác phía O so với I)
Phương trình OI: \(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
Giao điểm của OI và (C): \(2\left(x-2\right)^2=8\Rightarrow\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(\Rightarrow M_1\left(0;0\right)\) (loại); \(M_2\left(4;4\right)\) \(\Rightarrow a=b=4\)
Không có kết quả?!
giả sử a = 1 ; b = 2 ; c = 3 ; d = 4 ; e = 5
a+b+c+d+e= 1 + 2 + 3 + 4 + 5 = 15
=abcde
nghĩ vậy