Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c,d,e phải là số lẻ nếu không thì abcde = 0
Vì 45 bằng 5 nhân 9 nên abcde chia hết cho 5 và 9 , vậy e = 5
vì e bằng 5 nên 45 nhân a nhân b nhân c nhân d nhân e chia hết cho 25
Tức là d5 phải chia hết cho 25
vì a, b, c, d, e đều lẻ nên d5 = 75
Vậy số cần tìm là 77175
abcd5abcde = a . b . c . d . e . 45
Để abcde ≠≠0 thì a, b, c, d, e là số lẻ
Tử đó suy ra e = 5
abcde = a . b . c . d . 5 . 45
abcd5 = a . b . c . d . 9 . 25
Vì abcd5 chia hết cho 25 nên d5 chia hết cho 25. Suy ra d = 2 hoặc 7. Nhưng d là số lẻ nên d = 7.
abc75 = a . b . c . 7 . 9 . 25
Vì a, b, c ≤≤9 nên a + b + c ≤≤27.
abc00 + 75 = a . b . c . 7 . 9 . 25
Vì 75 chia 9 dư 3 và abc00 + 75 chia hết cho 9 nên abc00 chia 9 phải dư 6. Suy ra a + b + c chia 9 dư 6. Vậy a + b + c có thể là 6, 15,
24. Nhưng a + b + c lẻ nên a + b + c = 15.
Từ thử chọn ta tìm được a = 7, b = 7, c = 1.
Vậy abcde = 77175.
Vế phải chia hết cho 5 và khác 0 nên abcde có tận cùng là 5 nên e = 5. Suy ra abcd5 chia hết cho 25 nên d = 2 hoặc 7.
d=2 loại vì a x b x c x 2 x 5 x 45 có tận cùng là 0. Vậy d = 7.
Ta có: abc x 100 + 75 = a x b x c x 7 x 9 x 5 x 5. Chia cả 2 vế cho 25 ta được:
abc x 4 + 3 = a x b x c x 63
c = 0,2,4,6,8 loại vì vế phải chẵn, vế trái lẻ.
c = 5 loại vì tận cùng bên phải là 5, bên trái tận cùng là 3.
+ c = 1. Ta có:
ab1 x 4 + 3 = a x b x 63. Vế trái lẻ nên b lẻ. Mặt khác b >6 vì nếu b<6 thì a <0. Thay b = 7 ta có a = 7 thoả mãn. b = 9 loại.
+ c = 3. Ta có:
ab3 x 4 + 3 = a x b x 189. Vế trái lẻ nên b lẻ. Mặt khác: b<3 vì nếu b > 3 thì a <1. Thay b = 1 vào ta có:
a13 x 4 + 3 = 189 x a. Loại vì a<0
+ c = 7. Ta có:
ab7 x 4 + 3 = a x b x 441.
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
+ c = 9. Ta có:
ab9 x 4 + 3 = a x b x 567
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
Vậy abcde = 77175.
Giải
Gọi số cần tìm là abcde
=> a.b.c.d.e.45 = abcde
VT chia hết cho 5 => VP chia hết cho 5 => e=5
a.b.c.d.5.45=abcd5
VT chia hết cho 25 => VP chia hết 25 => de=25 hoặc 75
*de=25 => a.b.c.2.5.45=abc25 => Vô lý vì VT tận cùng là 0
=> de=75
Ta có: a.b.c.7.5.45=abc75
a.b.c<999757.5.45) = 63 (*)
Mặt khác ta có abc75=a.b.c.7.5.45
=> 100.abc= a.b.c.7.5.45-75
VP chia hết cho 75 => VT cũng chia hết cho 75
100 chia hết 25 => abc chia hết cho 3 => a+b+c chia hết cho 3 (**)
a,b,c không thể có số chẵn vì nếu có 1 số chẵn thì tích a.b.c.d.e=0
=> (a,b,c) = (1,3,5,7,9) (***)
Từ (*) (**) và (***) ta suy ra (a,b,c) có thể là 1 trong 3 nhóm sau
(1,5,9), (1,3,5), (1,7,7)
Thay lần lượt 3 nhóm kia vào, ta thấy nhóm (1,7,7) là thỏa mãn
=> abcde= 1.7.7.7.5.45 = 77175
Vế phải chia hết cho 5 và khác 0 nên abcde có tận cùng là 5 nên e = 5. Suy ra abcd5 chia hết cho 25 nên d = 2 hoặc 7.
d=2 loại vì a x b x c x 2 x 5 x 45 có tận cùng là 0. Vậy d = 7.
Ta có: abc x 100 + 75 = a x b x c x 7 x 9 x 5 x 5. Chia cả 2 vế cho 25ta được:
abc x 4 + 3 = a x b x c x 63
c = 0,2,4,6,8 loại vì vế phải chẵn, vế trái lẻ.
c = 5 loại vì tận cùng bên phải là 5, bên trái tận cùng là 3.
+ c = 1. Ta có:
ab1 x 4 + 3 = a x b x 63. Vế trái lẻ nên b lẻ. Mặt khác b >6 vì nếu b<6 thì a <0. Thay b = 7 ta có a = 7 thoả mãn. b = 9 loại.
+ c = 3. Ta có:
ab3 x 4 + 3 = a x b x 189. Vế trái lẻ nên b lẻ. Mặt khác: b<3 vì nếu b > 3 thì a <1. Thay b = 1 vào ta có:
a13 x 4 + 3 = 189 x a. Loại vì a<0
+ c = 7. Ta có:
ab7 x 4 + 3 = a x b x 441.
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
+ c = 9. Ta có:
ab9 x 4 + 3 = a x b x 567
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
Vậy abcde = 77175.
Gọi số cần tìm là abcde
=> a.b.c.d.e.45 = abcde
VT chia hết cho 5 => VP chia hết cho 5 => e=5
a.b.c.d.5.45=abcd5
VT chia hết cho 25 => VP chia hết 25 => de=25 hoặc 75
*de=25 => a.b.c.2.5.45=abc25 => Vô lý vì VT tận cùng là 0
=> de=75
Ta có: a.b.c.7.5.45=abc75
a.b.c<999757.5.45) = 63 (*)
Mặt khác ta có abc75=a.b.c.7.5.45
=> 100.abc= a.b.c.7.5.45-75
VP chia hết cho 75 => VT cũng chia hết cho 75
100 chia hết 25 => abc chia hết cho 3 => a+b+c chia hết cho 3 (**)
a,b,c không thể có số chẵn vì nếu có 1 số chẵn thì tích a.b.c.d.e=0
=> (a,b,c) = (1,3,5,7,9) (***)
Từ (*) (**) và (***) ta suy ra (a,b,c) có thể là 1 trong 3 nhóm sau
(1,5,9), (1,3,5), (1,7,7)
Thay lần lượt 3 nhóm kia vào, ta thấy nhóm (1,7,7) là thỏa mãn
=> abcde= 1.7.7.7.5.45 = 77175
abcd5abcde = a . b . c . d . e . 45
Để abcde \(\ne\)0 thì a, b, c, d, e là số lẻ
Tử đó suy ra e = 5
abcde = a . b . c . d . 5 . 45
abcd5 = a . b . c . d . 9 . 25
Vì abcd5 chia hết cho 25 nên d5 chia hết cho 25. Suy ra d = 2 hoặc 7. Nhưng d là số lẻ nên d = 7.
abc75 = a . b . c . 7 . 9 . 25
Vì a, b, c \(\le\)9 nên a + b + c \(\le\)27.
abc00 + 75 = a . b . c . 7 . 9 . 25
Vì 75 chia 9 dư 3 và abc00 + 75 chia hết cho 9 nên abc00 chia 9 phải dư 6. Suy ra a + b + c chia 9 dư 6. Vậy a + b + c có thể là 6, 15, 24. Nhưng a + b + c lẻ nên a + b + c = 15.
Từ thử chọn ta tìm được a = 7, b = 7, c = 1.
Vậy abcde = 77175.
Giải:
abcde x 9 = edcba
Ta có a=1 ( nếu a>1 thì tích sẽ là số có 6 chữ số) vậy e=9 ( 9x9=81)
Viết lại 1bcd9 x 9 =9dcb1 (1)
Ta lại có b<2 ( vì nếu b=2 thì 9x2=18 có nhớ ít nhất là 1 sang hàng mười nghìn khi đó tích sẽ có 6 chữ số)
Vậy b=0 hoặc b=1.
*Nếu b=0 thì 9xd+8=0 nên 9xd có tận cùng 2 vậy d=8.
9xc+8=c ,vì 9xc chỉ có tận cùng là 0,9,8,7,6,5,4,3,2,1 vậy c= 9
Thaycác giá trị vào (1) ta được: 10989 x9 =98901
* Nếu b=1 , lí luận tương tự như trên ta tìm được d=7 nhưng không xác định được giá trị của c
Vậy số cần tìm là: 10989
Ngoài 00000 x 9 = 00000 Thì có cách giải sau.
abcde x 9 =edcba
suy ra a=1 vì a>1 thì được kết quả gồm 6 chữ số.
a=1 mà e.9=..a suy ra e=9
b.9=d suy ra b=o
hoặc b=1 và không có dư từ phép nhân trước.
Nếu b=0 ta có 10cd9 x9=9dc01
d9 x 9=c01 suy ra d=8
10c89 x 9=98c01
0c89 x 9 =8c01 suy ra c =9
Vậy số cần tìm là 10989
Nếu b=1 và không có dư từ phép nhân trước ta có 11cd9 x 9 = 9dc11
d9 x 9 = c11 suy ra d=7
11c79 x 9=97c11
1c79 x 9=7c11 suy ra không tồn tại c.
Vậy số cần tìm là 10989
Phép nhân là 10989 x 9= 98901
Câu 2:
cdebc -abcd=acac
Suy ra c khác 0, a khác 0
c-d=...c suy ra d=o
c0ebc-abc0=acac
<=> abc0 + acac =c0ebc
a+a=c0
suy ra a+a=10 <=> a=5
suy ra c=1
5b10 + 5151=10eb1
10 +51=b1 => b=6
b+1=e => e=7
Vậy phép tính thích hợp là
10761-5610=5151
x=2 y=0
x=10,y=e