Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ cả 4 vế cho 1 ta có:\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
Suy ra :
a+b+c+d=4a=4b=4c=4d hay a=b=c=d
Do đó:
M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=4\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Leftrightarrow1+\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\left(ĐK:a,b,c,d\ne0\right)\)
\(TH1:a+b+c+d=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(b+c\right)}{b+c}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}=-1.4=-4\)
\(TH2:a+b+c+d=0\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}=1.4=4\)
Vậy M=-4 hay M=4
p/s: =.= bn sử dụng công thức cho dễ đọc tí nhé :>
\(\Leftrightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\text{Th}1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}=-4\)
\(\text{th}2:a+b+c+d\ne0\Rightarrow a=b=c=d\)
\(\Leftrightarrow M=1+1+1+1=4\)
Vậy....
p/s: đầu tiên nhớ ghi lại cái đề nha :))
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=1+1+1+1=4\)
tao chỉ làm bừa thôi , đúng thì đúng mà sai thì thôi đừng có tích sai cho tao :) cho t sủa lại cái đề nhé :)) sửa lại cái dấu < \(a\le2b:b\le3c:c\le4d:d\le5.\)
có Max của D là 5 dấu = xảy ra khi D=5
thay vào \(c\le4.5\Leftrightarrow c\le20\)
suy ra Max của C là 20 dấu = xảy ra khi C=20
thay vào \(b\le3c\Leftrightarrow b\le3.20\Leftrightarrow b\le60\)
Max của B là 60 dấu = xảy ra khi B = 60
thay vào : \(a\le2b\Leftrightarrow a\le2.60\Leftrightarrow a\le120\)
suy ra max của A là 120 :)) theo định lí six path of Pain
>>> Pain Thiên Đạo: ko sửa đề lung tung nhé
Tham khảo: ta có d< 5 => c< 4.5=20.
Lại theo gt b < 3c => b < 3.20 = 6c .
Lại tiếp ta có a < 2b => a < 2.60 = 120 .
Vậy Max a = 119
Nguồn: Aiko Aki
Nếu đề bài là: Cho số: \(\overline{abcd}\) biết \(2\overline{ab}=5\overline{cd}\)mà (5; 2 ) =1
=> \(\overline{ab}=5k\); \(\overline{cd}=2k\) là các số tự nhiên có hai chữ số.
Khi đó: \(10\le2k< 5k\le99\)
( Rát nhiều k thỏa mãn tốt nhất em nên kẻ bảng hơn là liệt kê)
+) k = 5 => \(\hept{\begin{cases}\overline{cd}=10\\\overline{ab}=25\end{cases}\Rightarrow\overline{abcd}=2510}\)
+) k = 6, 7, 8, 9, 10, 11, 12, 13, 14; 15; 16; 17 ; 18 tự làm
+) k =19 => \(\hept{\begin{cases}\overline{cd}=2.19=38\\\overline{ab}=5.19=95\end{cases}\Rightarrow\overline{abcd}=9538}\)
Nếu đề là: Cho a, b, c, d \(\inℕ^∗\), biết 2.ab =5.cd
Tìm a, b, c, d.
Có: \(\left(2;5\right)=1\)và 2.ab =5.cd
=> \(ab⋮5\) và \(cd⋮2\)
Nếu đặt : \(ab=5k\Rightarrow cd=2k\)và vì a, b, c, d \(\inℕ^∗\)=> k \(\inℕ^∗\),
Với mỗi k sẽ cho a,b, c, d và các hoán vị của nó
VD: k =1 => ab=5; cd=2 => a=1,b=5 hoặc a=5, b=1
c=2, d=1 hoặc c=1; d=2
k= 2 còn nhiều hơn ....
nên cô nghĩ đề vẫn thiếu.
Nếu em có lời giải của bạn này mong em đăng lên để cô và các bạn tham khảo:)
a)a=-3
b=-2
c=-1
d=0
b)dãy finaco...
ko nhớ tiếng anh
Quy luật: số hạng sau = tổng 2 số hạng liền trước
a + b = c; b + c = d;c + d = 0; d + 0 = 1
=> d = -1 => c = 1 => b = -2 => a = 3